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VJi SECTION I

INTRODUCTION

The ultimate objective of the Northrop/AFWAL program in Reference 1-1

is to develop an analytical methodology to predict the strength and lifetime

of bolted composite and metallic structural components. The development of

a strength analysis for plates bolted by many fasteners involves: (1) an

analysis that computes the distribution of an applied load among t"- various

fasteners in a bolted plate; and (2) a strength analysis that can be applied

at every fastener location. The second analysis addresses a segment of a

bolted laminate that includes a single fastener, and is the subject of this

report. Figure 1-1 presents a schematic representation of all the analytical

steps involved in the strength prediction of bolted structural components

At the initiation of the Northrop/AFWAL program (Reference 1-1), BJSFM

was the only available computer code that performed a strength analysis of

a bolted laminate that transferred loads via a single fastener. Reference 1-2

presents the details of the analysis that is performed by the BJSFM code.

The BJSFM analysis can be used to approximately predict the strength of bolted

joints when (1) the fastener loads have already been computed using other

analyses, (2) the fasteners are not too close to one another or to a neighboring

"cut-out, (3) the fasteners are rigid and their displacement with respect to

the plate is uniform in the plate thickness direciton, and (4) the first ply

failure at a fastener location essentially precipitates joint failure.
S

The conditions mentioned above severely restrict the application of the

"BJSFM code as an analytical tool in the design of bolted structures. An im-

proved strength analysis was developed in the referenced Northrop/AFWAL pro-

* gram to overcome most of the limitations in the BJSFM analysis. Details of

this improved strength analysis, programmed to be the SASCJ (Strength Analy,3±s

of Single Fastener Composite Joints) computer code, are presented in the

following sections.

!'.1
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From an analytical standpoint, the major limitations of the BJSFM

analysis are:

(1) It assumes the planform dimensions of the bolted laminate to

U be infinite (L and W -• in Figure 1-2).

(2) It circumvents the bolt/laminate contact problem by assuming a

coginusoidal bearing load distribution over half the hole boundary. It also

ignores the effect of friction between the fastener and the laminate (see

Figure 2-1).

"(3) It does not account for the effect of many joint parameters

that render the two dimensional analysis inaccurate. Load transfer in a

"- single shear situation, for example, is assumed to be equivalent to a

double shear situation. The fastener is also assumed to be rigid in shear

"and bending, and the effects of fastener torque are ignored.

"(4) Joint failure is assumed to be precipitated by the first ply

failure, each ply is assumed to be linear elastic to failure, and ply

"failure modes are not predicted. Consequently, a comparison between pre-

dicted joint strengths and measured values exhibits a poor correlation in

many situations,

The SASCJ code discussed in this report overcomes all the above

BJSFM limitations with the exception of item (2). In overcoming these

limitaticns, an Improved two-dimensional plate analysis, a fastener analysis

and a progressive failure analysis were developed.
S

. A brief summary of the program contributions to the strength analysis

.- of bolted composite and metallic plates, via the SASCJ code, is presented in

. Table 1-1. These accomplishments represent a significant improvement over

* the state of the art at the program initiation stage (the BJSFM computer

code), and aided the development of a validated strength analysis computer

code (SASCJ).

t Section 2 describes the two-dimensional analysis that accounts for
7 the influence of finite planform dimensions on the solutions for a plate

bolted by a single fastener. Section 3 presents the fastener analysis that

3
¢.
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Table 1-1. SUMMARY OF PROGRAM CONTRIBUTIO1NS TO THE STRENGTH
ANALYSIS OF PLATES BOLTED BY A SINGLE FASTENER

Prior to Program Initiation Program Accomplishments

Available Strength BJSFM SASCJ
Analysis Computer
Code

Bolted Plate Planform dimensions are Actual (finite) planform
Geometry assumed to be infinite. dimensions are accounted

for.

Bolted Laminate Analysis is independent of Analysis accounts for
Layup (ignores) laminate stacking the actual laminate

sequence. stacking sequence.

Fastener Properties Fastener is assumed to be a Fastener flexibility
rigid, frictionless pin. (bending and shear)
Its bending and shear effects effects are accounted
are ignored. for.

Fastener Torque The effect of fastener Fastener torque effects
torque is unaccounted for. are included in the

fastener analysis.

Load Eccentricity Analysis only represents Analysis differentiates
a double shear load trans- between single and
fer situation double shear situations.

Strength Prediction Prediction is based on first Prediction is based on a
ply failure, and demonstrates progressive failure
a poor correlation with procedure, assuming two-
measured strengths. stage ply failures, and

agrees well with
measured strengths.

5
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accounts for fastener flexibility, load eccentricity and fastener torque.

Section 4 describes the developed failure procedure that assumes nonlinear

(bilinear),ply behavior and predicts the progression of local (ply) failures

* until the joint cannot carry any additional load (joint failure). Section 5

demonstrates an excellent agreement between SASCJ predictions and test results

from Reference 1-I, validating the improved strength analysis.

)i~i:6
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SECTION 2

TWO-DDIENSIONAL ANALYSIS OF A FINITE LAMINATED

PLATE BOLTED BY A SINGLE FASTENER

As discussed in Section 1, a two-dimensional analysis of a finite

"tolted laminate is a primary requirement in the development of an analysis

-:hat predicts the strength of bolted laminates. In the following sub-sections,

a brief description of the two-dimensional analysis developed in Reference 2-1

is presented along with sample predictions.

2.1 Governing Equation

The two-dimensional stress field in a finite bolted plate is expressed

in terms of the Airy stress function F(x,y) that automatically satisfies

equilibrium equations everywhere in the plate domain. The corresponding

displacement solution satisfies compatibility requirements when the following

equation is satisfied by the stress function:

a 22 F,xxxx 2a 2 6 F, xxxy + (2a 1 2 + a 6 6 )F,xxyy - 2al 6 F xyyy +

aiiF~yyyy - 0 (2-1)

where aij are laminate compliances as defined in Reference 2-2. Equation 2-1

is the governing equation for the problem of interest.

2.2 Complex Variables Approach

A complex variables aprroach, described in Reference 2-3, is undertaken

.to obtain the solution to Equation 2-i. This approach has been pursued by

other investigators to solve similar problems (see References 2-4 to 2-7).

Equation 2-1 can be written as follows, in terms of four linear differential

operators of the first order:

DDD 3DD4F - 0 (2-2)

where Di (I=1,2,3,4) denotes the linear differential operator

i By iax (2-3)

7I



and p are the roots of the following characteristic equation:

4 2a1632.:•
a 2aa V + (2a + a6 6 ) J - 2a + a 0 (2-4)"11 16 12 26 22

'For physically meaningful values of the constants aij, two solution types are

possible:

(1) The roots of Equation 2-4 are two pairs of complex conjugates:

f:i-, l2 - y .i3 - - 1I and 1 4  2  (2-4)

where a bar denotes a complex conjugate, and 8,6>0.

(2) The roots are pairwise equal:

UI M U2  ia+ai, 01 "12 m C. 6i (8>0) (2-6)

For an isotropic plate, P 1 " 2  .

Reurrite Equation 2-2 as follows:

D4 F 83 D3 D4 F g g2; D2 D3 D4 F gl; Dg y- 1 1 ' 0 (2-7)

The solution to the lastequation may be written as:

F (x+-Iy) (2-8)

The general solution for F may then be written as:

(I) In the case of different complex roots, t.

.F -F 1 (x+1ly) + F2 (x+p.L2 y) + F3 (x+IJly) + F4 (x+'4 2 y) (2-9)

(2) In the case of pairwise equal complex roots.

.F-" F1 ((x+.iy) + (x+U1 1y) F2 (X 111y) + J (x+ply) + (N+ly) (2-40(2-10)

F4 (X+ljY)

F1 , F2 , F3 and F4 are arbitrary functions of the corresponding variables.

Redefining these variables as:

z1 - X+Ply z 2  X+11 y z1  X+y, - x+11 , (2-11)

and,recognizing that the stress function I- a real function of x and y,

Equations 2-9 and 2-10 may be written as:

8
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(1) F =2Re [F(ZI) + F2(z2)] when the roots are different, and (2-12)

(2) F = 2Re [Fl(zI) + ziF 2(Zl)] when the roots are equal. (2-13)

In the computer code developed to do this analysis (FIGEOM), the

properties of an isotropic plate are perturbed very slighty so that only the

solution case with unequal roots have to be considered. For this case, the

following new complex functions and 2 are introduced for convenience:
2

dFI dF2

01(z1) dz- 22(z2) =dz (2-14)
1 2

Derivatives of these functions are denoteQ as follows:

dol do2L
0 (z and - d (2-15)

d1 2

Equations 2-12 and 2-14 provide the following expressions for stresses

and displacements in the plate: L

0 2Re [I(zl) + J2 02(z2 )]

a -2Re [il(zl ) + ii 2 42 (z 2 )] (2-16)2

u - 2Re 1lil(zI) + P2' 2 (z 2 )J L
v - 2Re (q,14(z 1 ) + q2 02 (z 2 )"

where pI,'2 q, and q are the complex constants defined below:
2 22

P1 = al1- l + al2 - a16pl- P2 = a1 1U2 + a12 - al1661J2

(2-17)
q1 1 a 1 2 "l + a22/Ill - a2 6, q 2  a a1212 + a22/P2 - a26

26#

9,
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Any expression for F in terms of arbitrarily assumed I (zl) and

S 2 (z 2 ) functions is a solution to the :wo-dimensional problem, provided these

expressions satisfy the appropriate boundary conditions. Recall that

I (zl) and •2 (z 2) automatically satisfy the governing equation. The problem

of interest involves a finite anisotropic plate with a loaded or unloaded

circular or elliptical hole.(see Figure 2-1). In general, for arbitrary

geometry and boundary conditions, one cannot determine closed form solutions

Jfor iand One method of obtaining approximate solutions is to consider

series expansions of the functions with unknown coefficients. These unknown

coefficients are then determined by satisfying the boundary conditions approxi-

mately. In contrast to series expansions in z1 and z ,2 faster convergence is

obtained if series expansions are assumed in coordinates and •2' obtained

Sby using the following mapping functions:

*1- (z 1+ b-a2 )/(a-lj b) X 1

vzZ - A b a- (2-18)
i•2 •(Z 2 + 2 'J2 b )/( 2 ) 1

In a laminate with a circular or an elliptical hole, the internal boundary gets

t .ransformed to an ellipse in thez - z2 plane (see Equation 2-11). The

functions in Equation 2-18 map the internal boundary to a unit circle in the

ý2 plane, and the physical region of the laminate to the exterior of the

*unit circle (see Figure 2-1). The signs of the square root terms in Equation

2-18 are chosen such that the internal boundary is mapped un to the unit circle.

Note that these mapping functions are analytic functions, and hence the mapping

is conformal.

In the 1- 2 plane, and 02 are assumed to be the fcllowing modified

Laurent series expansions:

° n

'U.
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In the above expressions, aL and 6. are complex coefficients which are determined

so as to satisfy the boundary conditions. The logarithmic terms drop out if the

f~orce resultants'on the internal boundary are zero (see Reference 2-7).

'The stresses ''ns of and :2*and these derivatives are expressed

as:

n -n 12 2 22

0 n2

In specific cases, the above-expressions sinplify. For example, in the solu-

tions f or. infinite plates' the positive exponent terms drop out as the stresses

have to be bounded'at infinity. For most infinite plate problems, the solu-

tions:reduce to a one term solution (see Reference 2-3).

.In. the general case of a finite anisotropic plate with a loaded or un-

loaded hole, the coefficients can be numerically calculated to satisfy the

boundary conditio ns. :Generally, a convergent solution is obtained by truncating ::

the, series in Equation 2-19 as fo liows: I

N InE) (2 ( &-21)
B01n 2  n .1 -n2 , Jn2(

In order to determine the finite number of unknown coefficients, we can

select the same total number of points on the inner and outer boundaries, and

compute the unknown coefficients by satisfying the boundary conditions exactly

at these points. However, in this case, the calculated solutions at other

boundary points are significantly different from the imposed boundary condi-

,tions.(see Reference 2-4). As shown in Reference 2-4, a more desirable

approach is to choose a larger number of boundary points than the number of

unknoun coefficients, and to-satisfy the boundary conditions at these points

12
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in a least squares seitse. This sojution procedure has been adopted in the

analysis in Reference 2-1. Prior t- applying the least squares boundary

collation procedure, the single-valuedness of the displacements and the rigid

body rotational constraint have to be imposed.

2.3 Single-Valuedness of Displacements

In the series expansions for and 2 (Equation 2-21), the logarithmic

terms are multi-valued and give rise to multi-valued displaccments. To be

physically meaningful, the displacement functions have to be single-valued,

and these conditions have to be explicitly imposed on the coefficients of the

logarithmic terms.

From Eni-ations 2-16 and 2-21, the contributions of the logarithmic terms

to the displacements u and v are seen to be 2Re(plaolnc l + P2•olný ) and
o I +2o0 2

2Re(q aolnC1 + q 2 Boln&2 ), respectively. For the displacements to be single-

valued, the increment acquired by the above functions in describing the internal

boundary should be zero (see Reference 2-8). On the internal boundary, .
ie2 ,

YI = [r 2 1 =I, and 4I - 2= e Therefore, Re Pl 1 o(ie) + P2 eo(iO)ý "0 0

and Re q cL(i0) + q28 (iO) 2,r' =0. Or,

"Im(P1 o + P2 0 ) P1c0 + P2 80 -P 1 3ao-0 0 ,'

!m(qao0 + q2 Bo) q• 0 + q26 0 - q•30 - q2-6 0 (2-22)

Imposition of the above two conditions will ensure that the computed displace-

ments are single-valued. Equations 2-22 eliminate two of the unknown constants:

P2"i(2-23)
00~ 1( qjjI7 1-q2 ) + (q12 _2 -q2 pl)'98 ]/(q1 P2-q 2P1) (2-23)

1 3 
. 7



2.4 Zero Rigid Body Rotation

The rotation w of an infinitesimial element at any point (x, y) in the

laminate is given by:

wj(x, y) - 7 -_
y (2-25)

Using Equation 2-16,

w~~)-Re ~(U p1 q )0' + (i2 qp2 0-

-Re {(11 1p1-q )a I [.zl/ Iz;Z-V - 12b 2+ 1/(a-iv 1b)]

+z 2  vzP- -iAq + 1/(a-iii 2 b)]}

* + terms involving &I and ~2with negative and positive exponents > 2

R ,e [ 1 pl-q- )a 1 (a-i'pib) + (112P2  q q2 ~/(a-iU 2 b)] (2-26)

+ emswic~ae uctosof x and Y (i.e., are not constant)

For the rigid'body rotation of the laminate to be zero, the constant term

above should beý zero. Hence,

Re 1 - q2)-ipj/( + ub] W0

01- ( 1 p-q )a,/(a-i1jjb) *(ap.q)/(1ib)

+ G 71 1-ýj)31 I(a +r1jb) + (G2ý2-i 2)31/(A+i1j 2b) -0 (2-27)

This eliminates one more unknown constant:

* AiU -a1jb U 2P2-q2  .I1.PI-*q1  *p 2P2-q2  (-8

14



2.5 Least Squares Colution to an Over-Determined System of Linear Equations

Consider the following oveL-determined system of linear algebraic

equations:

[A] {x} = fb} (2-29)

where [A] is M x N, {x} is N x l, and fb} is M x i in size, and M > N.

The least squares solution, i.e., the solution that minimizes the sum

of the squares of the error in each equation, is given by:

ax (Z I Ai. x)-bj)2 •_0 for k-l,2,...N (2-30)

Or,

M N
E (A x -b.)A 1  a 0 for k , 1,2 . N (2-31)
1 jul ji ij k

The above N equations can be combined to produce the following matrix equation:

[A] (A] (x} - fb - {o (2-32)

The least squares solution is then expressed as:

(X ( [A)()' [A]T {b} (2-33)

2.6 Least Squares Boundary Collocation Solution Procedure

Consider the finite anisotropic plate in Figure 2-1. If it has an un-

loaded hole, every point on the hole boundary is stress-free. That is, the

normal and tangential stress components (a r and T r) are zero along the

"boundary. In this case, the applied loads on the external boundaries are

* . self-equilibrating. Let a total of M collocation points be selected on the

hole boundary and the external boundaries. At each point, the normal and

shear stress components are known. Using Equation 2-16, all the 2M boundary

conditions are written in terms of the unknown constants in Equation 2-21.

Stress boundary conditions on the hole boundary are transformed from the r-e

15



coordinates in which they are easily specified, to the x - y coordinates in

which Equation 2-16 is expressed, using appropriate transformation equations

(see Reference 2-2). The 2M boundary conditions are expressed in matrix form

Sas:

2Re ( {R} (2-34)

Or, B i)(2-35)

where [B] is a 2M x (4N+2) complex matrix, W51 is a (4N+2) x 1 vector of

the unknown complex coefficients (a-N) . ' %-9 ao .... (' -N'o ''o'' N'

and {R} is a 2M x 1 real vector that contains the specified boundary values.

:Imposition of the displacement single-valuedness and z.ero rigid body

rotation conditions (Equations 2-23, 2-24 and 2-28) eliminates three unknowns.

:Using the form in Equation 2-35, the vector of unknown complex coefficients

reduces in size from (8N+4) x 1 to (8N+1) x 1. The reduced system of equations

is written as:

[C) { ,=R (2-36)

where [C] is a 2M x (8N+l) complex matrix and {10 is the vector of 8N+1 un-

S. .known complex coefficients (aN. N ... B N' Na.... ..N' except a

a :,and 0, ) e-multiplyingequation 2-36 by [cIT, its least squares solution is:

- [T [CJ) -.1 C] T{R} (2-37)

Once the complex coefficients in Equation 2-21 are determined, the

.stresses and the displacements are calculated using Equation 2-16. The

accuracy of the solution is determined by recalculating the stresses at the

boundaries and comparing them to the imposed boundary conditions. As dis-

cussed later, an N value of 7 and approximately 100 points on the boundary

are sufficient to recover the imposed boundary conditions with 5%.

If the anisotropic plate in Figure 2-1 has a loaded hole, the assumptions

made in Reference 2-9 are retained. The fastener is assumed to be frictionless

,4 and is assumed to bear over half the hole boundary. The fastener/laminate

* contact problem is by-passed, and the contact solution is assumed to be a

cosinusoidal distribution of the radial stress (or) around the hole (see

,16
'16



Figure 1-2). The tangential stress (Tro) is zero around the frictionless hole

boundary. Results from recent investigations (References 2-5 and 2-6) indicate

that the contact problem could affect the local stresses significantly. Never-

theless, once the contact stress conditions around the hole boundary are com-

puted and incorporated into the least squares boundary collocation solution

procedure, the two-dimensional solution is computed as explained earlier.

The discussed boundary collocation solution procedure has been pro-

grammed to be the FIGEOM (Finite Geometry) computer code (see Reference 2-1).

2.7 Effect of Number of Terms in the Assumed Series

The FIGEOM computer code was initially used to determine the effect of

the number of terms in the assumed series expressions (N in Equation 2-21) on

the computed solution. For this purpose, a 50/40/10 laminate (from Reference

2-10) with a 1/4 inch diameter unloaded hole was considered. The laminate was

subjectr.d to a tensile loading as shown in Figure 2-2, and ax (0,D/2)/a was

computed for various values of N. The width of the laminate was assumed to be

small (W/D=2) to influence the computed a (O,D/2) value. A plot of ax x

(0,D/2)/a° versus N indicates that tne solution coverages when N exceeds 6 in
0

value (see Fiure 2-2).

Similar studies were also conducted on other laminate layups and on
metallic plates. For large W/D and E/D values (outer boundaries located with

respect to the center of the hole by distances in excess of 4D), a smaller N

value (N < 6) yields a converged solution. Based on these studies, N was set

equal to 7 for subsequent analyses, to ensure converged solutions under all
I

situations.

2.8 Effect of Number of Collocation Points

Let N be the number of collocation points along the hole boundary,
H

3 and let NR be the number of collocation points on the remote boundaries. The

total number of collocation points, M, is then equal to NH + NR. Referring

to Section 2.6, M has to be greater than 4N + 2, where N is the number of terms

in the assumed stress functions (see Equation 2-21). When N - 7, M has to be

greater than 30.

K 17
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Figure 2-2. Effect of N on Solution Convergence.
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Cons ier a 50/40/10 laminate subjected to a static tensile load in

double sheai (see Figure 2-3). The applied lCdd is fully resisted by the

fastener. Three situations are analyzed to evaluate the effect of the number

of collocation points on the convergence of the solution. The first situation

involves a 5/16 inch diameter hole and a laminate geometry defined by E/D = 1.2

and W/D 1.6. The second situation involves D = 1/4 inch, E/D = 1.5 and W/D = 2.0.

The last example considers a laminate with D = 1/4 inch, E/D = 3 and W/D = 4.

In every case, the computed a value at (0, D/2) is normalized with respect tox

the applied remote stress value (1 ksi) to obtain a stress concentration value

of K. The results for the three laminate geometries are presented in Figure 2-3.

Every remote boundary contains N R/4 collocation points. It is seen that, when

E/D and W/D are very small (1.2 and 1.6, respectively), K converges slowly with

N R But, when E/D and W/D are not very small (E/D Z 1.5, W/Dý2), K converges

more rapidly when NR is increased. N H = 30 and N H = 50 provide approximately

the same results (first example). If E > 1.5 D and W > 2D, K changes by less

than 5% when N R/4 is increased beyond a ialue of 10.
-ased on the results in Figure 2-3, subsequent analyses using the

FIGEOM computer code were carried out with NH - 50 and N R/4 - 10, using a

total of 90 collocation points, unless specified otherwise.

2.9 Sample FIGEOM Predictions

Having established N, NH and NR values (7, 50 and 40, respectively)

for solution convergence, FIGEOM is now applied to a few sample test cases

to demonstrate its predictive capability. The first example considers a

50/40/10 laminate with an unloaded hole (Reference 2-10), subjected to a

uniform tensile loading. The hole diameter is 1/4 inch and E/D and W/D are

small (2). Figure 2-4 compares the normalized a (0, y) variation across

the hole, predicted by FIGEOM, with the predictions using two other analyses

(References 2-7 and 2-9). FIGEOM predictions agree well with those based on

a similar analysis (Reference 2-7), but a considerable difference is observed

in comparison to the infinite plate solution (Reference 2-9). The infinite

plate solution will be approximately equal to the finite plate solution

(FIGEOM) when E/D and W/D values are much larger than four.

19
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50/40/-10 Laminate (Ref. 2-10); h -0.119 in.
L, 31m.!;Full bearing in double shear (0.15 in. Al)

ND number of collocation points on the remote boundaries
nj -nber of collocation points on the hole boundary

10

P/WhI I ksi

81

01

6

o N H a 30 650, E/D 1.2, W/D -1.6, D -5/16 in.

O H 50, E/D 3., W/D 2 , D 1/4 in.

0 10 20 30
N /4
R

Figure 2-3., Effect of Number of Collocation Points on*
-SolutionConvergence.
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"The effect of plate width, or the W/D ratio, on the stress concentration

"at (6,.D/2) is shown in Figure 2-5. The unloaded hole is 1/4 inch in diameter

.and E/D is equal to 3. Threc laminates from Reference 2-10 are considered.

It is seen that the stress concentration is relatively unchanged beyond W/D4,J

but increases significantly when .W/D is decreased below four.

The effect of the edge distance on the stress concentration ;. (0, D/2)

S is shown in Figure 2-6. In this case, E/D has relatively no effect on the

stress concentration in all three laminates. If the hole had been a loaded

hole, E/D would have had a more significant effect on K.

The effects of E/D and WID on the tangential stress distribution

"around the boundary of a loaded hole are shown in Figures 2-7 and 2-8. The

"solutions from Reference 2-9, in botýh the figures, correspond to a location

0.02 inch from the hole boundary, and therefore yield lower stress concentra-

"tions. The finite plate solution (FIGEOM) yields a larger stress concentra-

"tion at - 90o0 in compariscn to the infinite plate solution, the approximate

finite width solution and the' finite element solution presented in Reference

2-9. FIGECU predictions, corresponding to a location 0.02 inch away from the

hole boundary, are expected to agree well with the finite element solutions.

At e - 90 0, a a (0, D/2). If E/D, s reduced below three and W/D is re-

duced below six, the effect of the closer boundaries will result in much

larger stress concentrations at 90 .g

A non-rectangular plate geometry is shown in Figure 2-9. This sample

considers a lamiýnted ,lug that transfers the applied load to aluminum plates

in a double'shear configuration. The lug has a 50/40/10 layup, and the effect

of R/ron its stress concentration at x 0 and y- r is shown in Figure 2-9.

In this caseNR/4 was'selected to be 20 instead of the value (10) used in other

sample analyses. The results in Figure 2-9 indicate that a (o,r), normalized

with respect to the average bearing stress, decreases when the outer boundary O

is moved away from the loaded hole (R/r increases). A rectangular geometry

at R/ r 2'2 yields a lower normalized stress than the non-rectangular geometry.

The final example considers a situation where a fraction of the total

applied tensile load is transferred directly to the fastener hole location.
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The difference between the total applied load and the fastener load is referred

to as the by-pass load. This example represents an isolated fastener location

in a plate that is mechanically fastened to another using many bolts (see

Figure 1-I). Results for three laminates, with D = 1/4 inch, E/D = 5 and

W[/D-= 8, are presented in Figure 2-10. Presented results indicate that '-he

scress concentration increases when the fractional bolt bearing load is

increased. The predicted linear increase in K with an increase in the Tractional

- bolt load provides an explanation for the linear strength reduction with the bolt

load fraction observed in Reference 2-10.

2.10 Summary

A 'two-dimensional analysis (FIGEOM) for finite anisotropic plates with

loaded or unloaded holes, developed in Reference 2-1, was discussed. The

analysis uses a boundary collocation technique and computes the solution in a

least squares sense. Examples were presented to demonstrate the capability .of

the analysis in computing the effect of plate geometry on the stress concentra--

tion at the boundary.of the loaded or unloaded holLs. Computed solutions were

* compared with -finite plate solutions to demonstrate the significant increase

in the stress concentration when the outer plate boundaries are moved closer

to the hole.

The major limitation of the FIGEOM computer code is its approximation

of the fastener/plate contact stress distribution. Though the contact stress

distribution and the contact region depend on the laminate layup, FIGEOM

assumes a. cosinusoidal bearindg stress distribution over half the hole boundary.

Nevertheless, t-he developed analysis is a significant improvement over the

infinite plate analysis presented in Reference 2-9.
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SECTION 3

"FASTENER ANALYSIS

3.1 Introduction

* In the computation of the two dimensional stress state in a bolted plate,

' it is generally assumed that the fastener is rigid and that the fastener

plate displacement due to inplane loads does not vary in the plate thickness

direction (see Section 2). In most of the practical situations, this

4-assumption is not valid, and the stress field at the fastener location is

complex and three dimensional in nature. The three dimensional stress field

a at the fastener location -n a bolted metal or composite plate is influenced by

*,many factors: (1) fast enersize, (2) fastener stiffness, (3) fastener end con-

straints, (4) fastener torque, (5) hole clearance, (6) properties of the

"bolted plates, (7) stacking sequence of the bolted laminate, (8) load

.eccentricity induced byjoint configuration, etc.

Figures 3-1 and 3-2 illustrate the difference between a double lap and

a single lap joint configuration. The single lap configuration, due to the

eccentricity in the load path, will affect the local stress field more

significantly. This effect is further influenced by the fastener properties.

If the fastener modulus is large compared to the bolted plate modulus, and

the fastener diameter is large compared to the plate thickness, the fastener

bending and shear stiffnesses will be large enough to cause it to act like a

rigid fastener. Otherwise, fastener bending and shear deformation will

influence the local stress field significantly (see Figure 3-3).

Fastener end constraints also have a significant effect on the local stress

state. -Figure 3-4 shows three situations of interest. The protritd.ng head

fastener with a large applied torque value (Figure 3-4a) essentially creates

a nearly fixed end boundary condition (constraint). A pin permits free

rotation at the boundary (Figure 3-4c), and a highly torqued countersunk

fastener creates nearly fixed and nearly free constraints at the nut and

head locations, respectively (Figure 3-4b). Intermediate torque values

can be represented by elastic constraint equations that quantify constraints

between fixed and free conditions.
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I EI, AG are large compared to
plate EA value

., "D/h >>l

• .. .. (a) RigidFastener -- negligible fastener bending &
- shear deformation

•':ii:'i.'i .i. /;.to plate EA

II.P

P

(b) Flexible Fastener - Measurable fastener bending

and shear defornation

EA - plate axial stiffness

EI - fastener bending stiffness

GA - fastener shear stiffness

Figure 3-3. Typical Rigid and Flexible Fasteners.
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(a) Fixed - Fixed Conditions (Protruding head fastener --

high torque-up)

(b) Fixed - Free conditions (countersunk fastener, - high
torque-up)

p

(c) Free-Free Conditions (pin)

Figure 3-4. A Single Lap Configuration with Various
End Constraints on the Fastener.
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Hole clearance effects are also -obvious from Figure 3-4. In the case of
.a free-pin, for example, an initial hole clearance will cause the pin to

rotate in place or I"cock " when a loud is applied. If a protruding head

fastener is used, the friction due tc .:he applied torque is overcome prior

to fastener cocking (rigid body rotat-L'n).

If the fastener bending and shew- deformation effects are not negligible

or if fastener rotation is induced by any of the discussed factors, the local

stress field will be affected by the stacking sequence of the bolted laminate.

This is due to the non-uniform strain distribution in the thickness direction

of the bolted plate.

The following subsections "present details of an analysis that was developed

to predict the three dimensional stress state at a fastener location in a

bolted laminated or metallic plate. The-discussed analysis is similar in

approach to that in References 3-1 to 3-3. But, while the analysis in

References 3-1 to 3-3 is restricted to bolted metallic plates, the analysis

developed in this program is applicable to metallic and laminated anisotropic

plates.

3.2 Summary of Approacb

A brief summary of the analytical, approach is presented with the aid of

Figure 3-5. For a single lap joint. configuration subjected to a tensile load

(Figure 3-5a), a typical fastener/bolted plate displacement variation is

shown in Figure 3-5(b).i The distribution of the contact force is influenced

by the many factors discussed in Section.3.1, and is not a continuous

function along the fastener axial direction (or the plete thickness direction)

for a laminated bolted plate. Figure 3-5(b) shows a typical contact force

distribution in bolted metallic plates. The resultant of the contact force

distribution will be equal to the applied load (P) in magnitude, but will

not, in general, lie along the line of action of P. This is because its line

of action is determined based;on moment equilibrium considerations. A free

body 'diagram of the fastener will include contact forces that are opposite

in sense to those shown in Figure 3-5(c). Tha spring constants represent the

resistance offered by the bolted plate to fastener displacement. In a

laminated plate, spring constants vary from ply to ply and are dependent on ply
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Mt

(a) Single Lap Bolted Joint

bI

P4.

(b) Typical Fastener/Plate Displacement
Variation

Hkk 4A
SM2

M k_

(c) Mathematical Representation

Figure 3-5. Representation of a Single Lap Configuration
by an Equivalent Fastener Problem.
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fiber orientations. In a, metallic plate, the spring constant will be invariant

in the thickness direction. The various springs, with appropriate constants

assigned to each,,mathematically replace the bolted plates by an elastic

foundation whose modulus is piecewise uniform in general.

SThe three dimensional stress field at the fastener location is, therefore,

computed by obtaining the solution to a mathematical problem that represents

the fastener as a beamresting on an elastic foundation with piecewise

uniform i6duli that represent the various plies in a bolted laminate. The

fastener is modeled as a Timoshenko beam to account for bending and shear

deformation effects. The foundation is represented by a general bilinear

contact load versus deflection curve,. to account for a reduced ply stiffness

after an initial damage I(local failure) is precipitated. At the head and

nut 40cations of the fastener, rotational constraints are introduced. These

constraints 'are influenced by the applied torque and the size of the washers,

if any. Fastener torque also introduces friction forces on the bolted plates,

reducing the load transferred directly by the fastener. If either of the

bolted plates is a laminate, its stacking sequence will influence the

fastener displacement, 'and hence the load distribution in the thickness

direction.

<The governing differential.equation for the fastener displacement is

solved after the derivatives are replaced, by appropriate differences. The

finite difference formulation of the problem facilitates fast and accurate
computations via an easily iutomated solution procedure. For a symmetric

double lap configuration, symmetry conditions at the center replace the nut

location boundary conditions used otherwise. Solutions are obtained over

the region of contact in each plate, and continuity conditions are enforced

where the two plates are in contact. The following sub-sections present

details of the analysis.

3.3 Governing Differential Equation

- The fastener is modeled as a Timoshenko beam to account for shear

deformation effects. Figure 3-6 shows the deformed state of an infinitesimal

segment- of the fastener, and Figure 3-7 presents the assumed sign conventions
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Figure 3-7. Positive Shear and Moment Conventions.
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for transverse shear MV) and bending moment (M) in the fastener. The coordi-

r.ates along the fastener axis and the loading direction (in the plane of the

bolted plate) are labeled z and x, respectively. Under load, a plane section

AB deforms to the form shown-in Figure 3-6. In doing so, the cross-

section undergoes a translational displacement u(z) in the x direction, a

-bnding rotation *(z), and shear-deformation. While 4 is not a function of

x, the shear strain due toV is,. duelto the variation of the transverse

shear stress (T ) in the x.direction. This results in the curved shape for
AA ~ zx
AB . Representing the average cross-,sectional shear distortion (rotation) by

the symbol 0, the following relationship is assumed (Timoshenko beam theory):

vf rX dA XGA4 (3-1)

where A is the fastener cross-sectional area, G is its shear modulus, and X

is a shear correction factor accounting for nonlinear T distribution in the
Lx

x direction. The total rotation of the section AB is denoted by u', where the

prime denotes differentiation with.respect to z. From Figure 3-6, it follows

-that:

ut/ (3-2)

The bending moment at any z location is expressed as follows:

M- f a xdA (-E E) xdA Ex)xdA EI (3-3)

where a is the fastener bending stress, c is the axial strain in the fastener
z Z

due to bending, E is the fastener Young's modulus, and I is the moment of

inertia of the fastener cross-section about the y axis (normal to the r:

plane).

If the fastener is subjected to a distributed transverse load q(z), force

and moment equilibrium considerations yield the following relationship (see

'Figure 3-7):U



V -q, and (3-4)

M' -v (3-5)

Again, primes denote differentiation with respect to z. Equations 3-1 to

3-5 yield the following relationships for M, V and 4:

M -EI u + q/(XGA)] (3-6)

V -El [u"' + q'/(AGA)] (3-7)

fit.

-(EI/XGA) [u"'-q'/(XG4A)] -u' (3-8)

Equations 3-4 and 3-5 may be combined to yield the ' llowir-. equilibrium 5,"

equation:

"M-q (3-9)

Substituting Equation 3-6 into the above equation, the following governing

equation is obtained:

I off q" /(XGA) - q/(EI) - 0 (3-10)

This equation, where q - q(z), governs the displacement of the fastener.

U d4 u/dz4 and q" d dz2."

3.4 Nonlinear Foundation Behavior

The effect of the bolted plate (metallic or laminated) on the fastener

displacement is represented by the transverse loading term q(z) in the •" "*

Equation 3-10. The q(z) term is, in turn, linearly related to the fastener

displacement u(z) through the foundation modulus k(z). For the more general

laminated foundation, the foundation modulus varies from ply to ply, and is

uniform within a ply. k(z) is, therefore, piecewise uniform.

In the developed analysis, every ply is also assumed to be a bilinear
elastic (Hencky) material (see Figure 3-8). This representation of the ply

behavior permits the prediction of a local damage in the ply (when u - uo)
0
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ULTIM ATE
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(FINAL) PLY FAILURE
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PLY DISPLACEMENT, u,

Figure 3-8. Bilinear 'Elaatic Behavior of a Ply.
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that is not catastrophic. The ply modulus is 1 for 0 < u < uo. Depending

on the type of damage predicted in the ply, its mcdulus (k,) beyond u = u is
0

set to be greater than, equal to or less than zero. If k2 > 0, the ply

exhibits a hardening behavior; if k < 0, it exhibits a softening behavior;

and if k2 = 0, the ply is an elastic-perfcctly plastic material. Wnen u

takes the value of u* (Figure 3-8), the ply loses its load-carrying capability.

At this load level, the ply. is assumed to have failed totally ani its modulus

and load are reset to zero. Adjacent unfailed plies share the load that is

released by the totally failed ply.

The gcneral ply load versus displacement behavior (Figure 3-8) is

expressed mathcnatically as:

q(z) -ku - (3-11)

where, k - k for an undamaged ply

k - k2 = 0k1 for a partically damaged ply

k - 0 for a totally damaged ply

Sk - k2 = (I-a)k1 for a partically damaged ply

k- 0 for a totally aamaged ply

u 0 for an undamaged ply

u = u for a partially or totally damaged ply

(ki, Uo, k2 and u* or pultm /ate/Pinitial) fully define the general ply behavior.

The computation of k for the various plies is discussed in tbe following

sub-section. u° and u* are dependent on the failure criteria used to

predict partial and total ply damage. k2 - ck 1 will be established by

assigning a values for the various partial damage types. If the ply behavior

can be aeequately represented by a linear elastic approximation, a simplified

form of Equation 3-11 may be used.

3.5 Computation of Initial Foundaticn Moduli 'v. for the Various Ply Types

If a bolted plate is a laminate, the various fiber orientations in its

lay-up determine the number of ply types in tie laminate, assuming all plies

tc be made of the same material. A metallic bolted plate has only one ply

type. The initial fondation modulus (k, in Figure 3-8) for each ply type

41 1
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is computed by considering a situation where the local three dimensional

stress field can be approximated by a two dimensional stress field. This is

done by assuming that the fastener is rigid in bending (EI- -) and in shear

(GA- :), and that the loadis transferred in a symmetrical double lap con-

figuration. In this situation, the inplane strains do not vary in the

thickness direction when onlyjinplane loads are present. This strain field

and the corresponding stress, state in each ply are computed using the FIGEOM

computer code (Ref erence 2-l).

An effective fastener displacement in the load direction Wx is obtained

prior to computing k1 for the various ply types. This is accomplished by

equating the total work done by the fastener-imposed radial bearing stresses

around the hole boundary, (ZW) to the expression (1/2) P 6 where P is

the total' fastener load and 6ef is the effective fastener displacement in
4 . -,the load (x) direction:

n n
6 E W/EF

eff jli- xi

1:/ n 1 r hRAO Cose+ 0.5A
1i/2 Z iAO u i /11 (8 i+ ).6 ] (3-12)

11 i7i 1 - I

where n is the number of collocation points around the hole boundary, and

Figure 3-9 describes the various quantities that are present in Equation 3-12.

R is the radius of the hole and h is the total plate thickness.

The strainse:orresponding to a fastener load of P are invariant in the

plate-thickness-direction. Using the appropriate stiffness matrix for each

ply type and these strains, ply stresses are computed at each collocation

poin't. Stresses in rectangular coordinates (x,y) are transformed to stresses

in polar coordinates (RA) using appropriate transformation relationships. The

load (P ) in the j th -ly, in the load direction, is computed as followsxi
(see Figure 3-10):
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E=- cyr hRAO iu

i=r 1

R i

dop Bolted Plate

Figure 3-9. Computation of Work Done by the Fastener Bearing

S tress

n n

Px E : h~ R~O Cos (e i+ 0.5 -O i E e h~ RAe i Sin (6 + 0.5.
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n
P =1: r h R Ae Cos (6 +0.5 Aei) -}-ji :i jj i I

"" (3 -13)

n
Z T hRA6 Sin (6i + 0.5 A)

" The initial foundation modulus (k ) for the j th ply type is then computed
1

using, the following reJ.,-tionship:

kj P M(h6 .~(3-14)
xj j eff

where 6' and P are defined in Equation- 3-12 and 3-13, respectively, and
eff xi

* .h is the thicknxess of the j th ply type.

* 3.6 Boundary and ContinuityConditions

The boundary and continuity conditions on a fastener that bolts two

plates in a single lap configuration are shown in Figure 3-11. The portion

of the fastener in eac., plate is shown separately. The load (P) in each

plate is enforced as. a shear boundary conditioa at the interfacial locction,

"to satisfy force equilibrium requirement.. The shear force values at t,,!

outer boundaries (the head and nut locations of the fastener) are set equal

to zero, since the load. transfer is effected between these locations.

"At the interface between the bolted plates, continuity of the bending slope

and the bending mo.ent are enforced. Continuity of displacement is not

enforced at this location., This-is because u (z) represents the fastener/

plate displacement, and undergoes a finite discontinuity across this inter-

facial location in the joint.

At the fastener head locatr ion, the head type and the presence of

washers, if any, influence the constraint against free rotation. A washer

and a nut offer a: similar constraint at the other boundary. The constraints

at the fastener head and nut.locations can be generalized as shown in

Figure 3-1l, where R and R quantifY the elastic restraint. For a pin-

connected joint (Figure 3-4c), for example, R1 and R2 are set equal to zero.
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V 0
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Figure 3-11. Boundary and Continuity Conditions for a
Typical Single Lap Joint.
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For a countersunk fastener, R1 is set equal to zero (at the head location).

Fastener torque.influences R a values significantly. If a protruding

head fastener is highly torqued (Figure 3-4a), R, and Rvalues become very

large (~~,and tend to reduce the bending slope to zero at the head and

nut locati.ons,

Reference 3-5 presents an elasticity analysis that could be useful in

the determination of the rotational constant R in M -R*. The analysis

assumes a rigid circular dis'k'to be supported by a transversely isotropic

half space, and subjected-to a transverse load and a bending moment. The

derived expression for R is:

R= 8Gr 3f(3cý (3-15)
0 0

whereG is the transverse shear modulus of the.,half space, r 0 is the radius
of the disk, and 0is a dimensionless constant that varies from 0.7 for

0
an isotropic space to 1.0 for a highly anisotropic space. In a practical

joint, an annular disk (washer) is supported by a foundation of finite

thickness and the expression in equation 3-.15 is not directly applicable.

An empirical expression will, therefore, be derived forR, based on a

correlation between analysis and experiment. This expression will relate

* R to the washer diameter anid the fastener torque.

*Load transfer in a symmetric double lap configuration yields the boun-

dary, symmetry and continuity conditions shown in Figure 3-12. The

* boundary conditions at the fastener head location, and the shear and con-

tinuity conditions at the .interface between adjacent plates, are identical

to those discussed earlier (see Figure 3-11). The assumption of a
syamietric, double shear situation requires-the Imposition of the symmetry

* conditions shown in Figure 3-12.-Symametry..introduces a zero shear and
a zero bending slope condition at the midplane of plate,2. It is noted
that only half the fas~tener is analyzed for, a symmetric double shear
situation.

*Altotal of 8L boundary/continiuity/symmetry conditions are identified

for each joint configuration 1-- the, single lap, joint in Figure 3-11, and
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Figure 3-12. Bo~undary and Continuity Conditions for a
Typical Double Lap Joint.
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the double-lap joint in Figure.3-12. For the single lap joint (Figure 3-11),

the 8 conditions are:

V - 0, and M4 P= at the fastener head location

V - -P at the plate 1/plate 2 interface, in the plate 1 region

V - -P at the, plate 1/plate:2 interface, in the plate 2 region

1M at. the plate 1/plate 2 interface in the plate 1 region - M at the

plate'1/plate 2 interface in the plate 2 region (3-126)

4, at the plate 1/plate 2 interface in the plate 1 region - at the
-plate, /plate 2 interface-in the plate 2 region
" V -0 ari M = R2ý'at the nut location

For the double lap .Joint (Figure 3-12), the first 6 conditions are the

same as above. The last two ýconditions at the nut location are replaced by

the following conditions at the midplane of plate 2%

V -0,.and 14- (V. 0) at the midplane of plate 2 (plane of symmetry)

(3-17)

3.7 Finite Difference Formulation of the Problem

The governing equation for the fastener/plate displacement (Equation

S 3-10)contains expressions that are dependent on the relationship between

the ply load and the ply displacement (Equation 3-11). Incorporation
of Equation (3-1I) into Equation (3-10) will result in a fourth order,

ordinary differential equation for u(z),with variable coefficients

(because k.is a function of z). A finite difference approximation of the

governing equation (and the boundary and continuity conditions) is adopted

to obtain the fastener/plate displacement and the corresponding fastener

load distribution in the thickness direction of the bolted plates. This

provides a rapidly: executable solution scheme that can be economically

executed many times to predict progressive failures in bolted joints.

Details of :the finite difference formulation of the problem are presented

below.
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Figure 3-13. An Example of the Node Layout and Numbering
Scheme in a Single Lap Shear Joint Configu~ration.

Fastener ~+
head Zt1z 1u 1 +t2
location Plate 1 Interface Plate 2

9 - 9

I I

1 2 3 4 "i- i I i+1l 'n-ýl n_+2 n+3 n+4 in+5 ;+( n+7 n-+§ -n-m+6 n+m+8

Figure 3-14. A General Node Arrangement with n Nodes in Plate 1
and m Nodes in Plate 2.
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3.7.1 Nodal Discretization of the Fastener

Figure 3-13 describes how the continuous fastener is discretized

o a finite number of nodal points., :In the chosen example, plates 1 and

a - re assumed to be 5-ply and 4-ply laminates, respectively, bolted together

in a single lap configuration. The portion of the fastener in each plate

is represented by equally-spaced nodes located at the ply midplanes. If

either plate is metallic, it is divided into m or n number of plies of the

same properties. To enable the use of a central difference scheme for

the governing i'equation and the boundary conditions, two 'false' nodes are

assumed to bepresent on either side of a plate. In the example in Figure

3-13, a total of 1i7 nodes is assumed. Nine of these are hI apart in the

plate 1 region, and the remaining eight are h apart in the plate 2 region.

Nodes 1, 2, 8 and 9 are 'false' nodes corresponding to the portion of

the fastener in plate 1, and nodes 10, 11, 16 and 17 are 'false' nodes

toresponding to the plate 2 region.

In a symmetric double lap joint (see Figure 3-12), the fastener is

discretized only up to the. plane of symmetry (midplane of plate 2). In

this case, mi in Figure 3-13 represents half of the number of plies in

plate 2.

In the example in Figure 3-13, m + n + 8 nodes are present. Of these,

nm + n are 'physical' nodes, and 8are 'faise' nodes. The enforcement of

the governingequation at the 'physical' nodes yields m + n equations.

The imposition of the boundary/continuity/symmetry conditions yields 8

equations (see Section 3.6). These m,+ n + 8 equations provide the

solutions for the m -+ n + 8 nodal displacements.

The properties of- a- ply are represented by an equivalent stiffness

at the- corresponding node in,.this approach. The computed nodal displace-

nments are used in the calculatio of the average ply loads. When a ply

failure is predicted, the corresponding nodal stiffness is modified to

apprýpriately represent this failure.
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3.7.2 Central Difference Expressions

Assume that the nodes in a region are separated by a distance h. In

this case Az - h for the region, and the derivatives of the nodal displace-

ments with respect to z may be approximated by the following central

difference expressions, at node i:

2hu _ui +il uhui -ui_ 1  "+-h -, u_ u + u ,+I

3 ", (3-18)
2h ui ui. 2 + 2ui 1 -2ui+1 + u1+2

4 '
huI u_ 2 -4 u + 6u -4 u + u

1 12 i-l i i+l 1+2

The error in the above approximations is of the order of h2. In the example

in Figure 3-13, plate 1 is divided into n plies that are h1 in thickness,

and plate 2 is divided into m plies that are h2 in thickness. hI and

must be of the same order of magnitude.

It is noted that the difference approximations of derivatives to the

fourth order (Equations 3-18) involve a maximum of two nodes on either side

of the node where the derivative is approximated. The enforcement of the

governing equation at every physical node, therefore, requires two 'false' .

nodes on either side of each plate (see Figure 3-13). The boundary/continuity/

symmetry conditions are enforced at the first or the last nodal location in "
each plate. Referring to these conditions in Equations 3-16 and 3-17, and

to their relationships to derivatives to the third order of the nodal displace- '

ment (Equatikns 3-6 to 3-8), it is seen that these conditions also require the

two 'false' nodes on either side of each plate. A general node arrangement

for an n-ply plate bolted to an m-ply plate is shown in Figure 3-14. A total

of 8 'false' nodes are r.,quired for the discussed finite difference formulation.

The 'false' nodes are assumed *o be mirror reflections about the first

physical node at every boundary. Referring to Figure 3-14, node 2 is assumed to

have the properties (stiffness) of node 4, and node 1 is assumed to be iden-

,-.
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Itical to. n ode 5.' Likewise, nodes rri3, n+4, n4-5, n+6, m+n+7 and m+n+8 are

mirror reflections of,'nodes n+l, n n+9, n+8, m+n+5 and m+n+4, respec-

tively.

.A central d Iiff Ierence appoimation of-the governing equation is obtained

by incorporating Equat +ion 3-18, and 'similar difference expressions for

Equation: 3-11, int oI Eq uation_3-l0. The following difference expressions are

used in the process:

4 iv
h u ui- -4 ui +ý6 u -4,U +

a ~kui ~iui(3-19)
2 '
h q~ i ,l- ,+q~

(-k u -k+ (-ki-iuu + (kiiiuiii)

'k i-1u i- + 2k iu -k i u 1 -~l k i1 ui1 + 2k iu ~ki+ u i+i

Substituting the above expressions into Equation 3-10, the governing

equation at the it node becomes:

2h' 2 4i
u h( .+ u +ki6 + hk-

22.

a~ (cu-

2 . 2--a h1+ 1
-GAhkiuj + X GA. )Ui~ (3-20)

a>c -1 for plate 1, and ca, 2 for plate 2. For the it ply, the values of

k,k and a are' determined by its state of damage (see Equation 3-11).

Equations 3-6 to 3-8 express -the fastener bending moment, transverse

shear and the bending slope, respectively, in terms of u and q derivatives.

continuity/symmetry conditions:
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At z=0 (fastener head location/ top of the Joint)

hk hýk4
U V 2 + =•k 2  h4 -) u + u5 o (3-21)

1 + (2+2 (+ GA 4

(ii) , .o..

2 ACA hi Rlk2
RlU - (2 1 - 2hlAGA b1 RI El XGA ) u2

- 1hlAGA + 2h k3 ) u3

h 2R GA h2Rlk
-(-2R -2h XGA + -E -G--) u4

3-- '~
-Ru5 •2hlk3u (3-22)

At z-tI (joint interZace between plates I and 2)

(iii) V1 =-P:2 2

(2 +. l + (2 + hk+ 3 -u -n -GA Un+l AGA - n+3 n+4

-2h 3 P

E1 (3-23)

(iv) V = 2:,

2 2 2k
1h-l "+1 'AGA ln+3n-(2 +- Un + (2 + nGA

V••...
h2 h 2k
_-__ 3 h k n+)l u+ h U + h 3(2 n+12 n+5 12 ( GA

2 h2 k h 2
h XGA -3 2 n+8 2)XA-u + 3h ) Un+6 - h1 2 (2 + -"") -- -n+8 h1 2 Un49 - 0

(3-24)
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• 2 h2

where h 12 h A

2
h- k

n+i( + un+ ,h1 Un+3  12 %+6

h 2k h2 2.
2 kn+7 2 (k1-

12 ( GA Un-7 - 1 2 u+ GA n+2 n+2 rr7-n+7

3 -25)

(vi) Vbon P

b2-k 8  h2k J
"2 n.. 2 n+8

U, XGA)u 6 +,(2 + 15A )u,+ 8  n+9 4

.-2h P

El- (3-26)

-At zmt +t (fastener nutl locatio~n/bottom of the joint)

(vii) V2 i0:

-un+m+4 + (2 + XGA2  un + 5 ( (+ XGA )n+m--7 +

u -O (3-27)

(-.ii 2 -• , .2 h2 k

ýP)L2GA 2 2 n~m+5
2 n~m+4 2 2, El XGA

2

-(4h XGA + 2h 3 k u) (-2R- +h 2R2 Sh +
2 2 ,r• • 7 n4m+6 ( 2 -2hnm6A E -

2
3- R

2 Unn~ m+7 3~~
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3.8 Solution Procedure

The gover,..,ng Equation 3-20 is enforced at the n+m 'physical' nodes.

Equations 3-21 to 3-28 are enforced at the bounder nodes (identified in

Figure 3-14 as nodes 3 and n+2 in plate 1, and nodes n+7 and m+n+6 in

plate 2). This provides a system of nr+n+8 equations that determine the

through-the-thickness fastener displacement. Figure 3-15 shows a matrix

representation of the problem defined in Figure 3-13 (n=5,n =4). The

functions f(ui are set equal to zero until the ply corresponding to mode L
i is damaged.

The system of m+n+8 equations, in general, is solved for the nodal

displacements by using a standard matrix decomposition or matrix inversion

routine. It is seen, from Figure 3-15, that the coefficient matrix to be

inverted is banded in nature. A special purpose Gaussian triangularization

computer code was developed to solve for the nodal displacements. Whe.

the coefficient matrix size is large, this provides an economical means of

obtaining solutions, especially when the solution procedure is repeated

many times to predict progressive failures in the bolted plates.

The finite difference formulation of the fastener analysis has been

programmed to be the FDFA zu,..puter code. Convergence studies on the analysis,

correlation of FDFA predictions with available analytical solutions, and

sample predictions using FDFA are presented below.

3.9 Convergence Study on the Fas: ener Analysis (FDFA)

The number of actual plies in a bolted laminate determines the number of

nodes in the portion of the fastener within that laminate. A physical ply can

also be divided equally into two or more plies of smaller thicknesses, to

improve the accuracy of the solution. Referring to Figure 3-13, if plate 1 is

a laminate with n plies, the portion of the fastener within plate 1 can be

divided into lzn segments that are tl/(txn) in thickness, where I is any

integer >1. In Figure 3-13, n -5 and L -1.

The effect of the number of nodes per bolted plate on the displacement

solution was studied by considering a steel-to-steel bolted joint example.

The steel plates were 0.125 inch in thickness, and transferred a tensile load
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in a single lap configuration via a 0.25 inch diameter steel bolt. The steel

Sbolt was sssumed to have a modulus (E) of 30 x 10 and a Poisson's ratio (2)

of 0.30. The steel plates were assumed to have an effective modulus of

7.68 x 106 psi, and the bolt was assumed to be free to rotate at the head and

*~ nut locations (zero moment or pin conditlons). Figure 3-16 shows the

I .predicted fastener/plate displacement variation through the thickness of

plate 1, for an applied load of 1000 lbs, when the number of nodes in plate 1

is increased from 5 to 40. It is seen that beyond 20 nodes, the displacement

distribution is relatively unaffected.

Figure 3-17 presents the fastener/plate displacement distribution through
the thickness of plate 1, when the 1 kip load transfer is affected in a

double lap configuration. In this case, the properties were assumed to be

3 the same as those in Figure 3-16, and plata 2 was 0.25 inch in thickness, The

results in Figura 3-17 also indicate that beyond 20 nodes, the displacement

solution is relatively unaffected.

It is therefore necessary to divide a metallic plate into at least 20

Identical "plies" to obtain a converged displacement solution, which ensures

an accurate prediction of the load distribution in the thickness direction.

In laminated (non-metallic) plates, a minimum of 30 nodes per plate is
required to obtain accurate solutions.

3.10 Comparison of FDFA Predictions with Available Analytical Solutions

j, Harris and Ojalvo (Reference 3-1) have obtained analytical solutions for

metal-to-metal load transfer in single and double shear configurations, when

the boundary conditions at the fastener head and nut lications are restricted

to zero moment (free pin) or zero slope (rigid head or iut). Predictions

made by the finite difference fastener analysis (FDFA) csde in SASCJ were

compared with the results in Reference 3-1 to establish the validity of FDFA.

The first example selected for the correlation study is a single shear

V, 'situation with no rotational constraint (zero moment or free pin condition)

at the fastener head and nut locations. The bolted plates are 0.125 inch

thick steel plates, and are assumed to have an effective modulus of 7.68 x 106

psi. The steel fastener is 0.25 inch in diameter, with E - 30 x 106 psi
;.r" and v -0.3. The fastener is assumed to be a flexural beam in one case (rigid

in shear), a shear beam in the second case (rigid in bending), and a completely

Li
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rigid beam In the third case. For the flexural beam, the analysis in Reference

3-1 set GA to be infinite in magnitude, and FDFA assumed XGA to be 1010 lbs.

For the shear beam, FDFA assumed El (infinity in Reference 3-1) to be
10 210 lb-in . For the completely rigid beam, the analysis In Reference 3-1

set•El and GA tobe infinity, and FDFA set E to be 3 x 1I02 psi. A comparison

between the predictions made by FDFA and the analysis in Reference 3-1 is

presented in Table 3-1. Refer to Figure 3-11 for the definition of z/t 1 , where

t is the thickness of the top plate (plate 1), and z is measured from the

fastener head location (top of plate 1) toward the nut location. For the

"steel plates, *the loading, rate (q in lbs/inch) Is expressed by q -- ku

(see Equation 3-11). where k is the effective modulus of the plate material

and u is the fastener/plate displacement. The quantity qt,/P represents a

load interaction, parameter which provides a measure of the deviation in the

through-the-thickness +load distribution from the uniform value of unity

corresponding to a two-dimensional analysis of the plate. P is the applied

load on the steel plates (sce Figure 3-11).

Table 3-1 indicates that the FDFA predictions are within 5 percent of the

analytical predictions made In::Reference 3-1. It is noted that rigidity in

shear or bending,or bothis, onlyapproximated by the FDFA code. The

representation of the rigidities by numbers larger than those shown in

Table 3-1 result i numerical problems that result from an ill-conditioned

coefficient- +'r the unknown displacements. Nevertheless, FDFA predic-

tions and those bas•i the analysis in Reference 3-1 demonstrate an

* excellent agreement (erroi -5%)*"validating the FDFA code. It is also noted

that the three types of rigidity.yield approximately the same results using

either analysis.

ThU k*oi6u AUswaiyle selected for the correlation study is the same as the
first example, but the fastener head and nut locations are assumed to be

* rigidly constrained (zero bending slope). Table 3-2 presents the comparison

S -between predictions made by FDFA and the analycis in Reference 3-1. Again,

-the difference between the two sets of results is less than 5 percent and the

two types of irigidities yield approximately the same results.

The last example considered for the validation of the FDFA code is a

double shear situation where two 0.0625 inch thick steel plates (labeled 1

Sin Figure'3-12) transfer the applied load to a 0.125 inch thick steel plate

60
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(labeled 2 in Figure 3-12) via a 0.23 inch diameter steel fastener. The

fastener is assumed to be completely rigid (El and GA -+ -), and is assumed to be

free to rotate at the head and nut locations (zero moment conditiors). The

FDFA code represented a rigid fastener by increasing its modulus from

30 x 106 to 30 x 1010 psi. The analysis in Reference 3-1 predicted a uniform

load distribution (qt 1 /P = 1 for 0 < z/t 1 < 1). The FDFA code also predicted

a uniform load distribution (qt 1 /P = 1.034 for 0 < z/tI < 1), and indicated

a 3% error in the recovery of the applied load.

The FDFA code, therefore, predicts accurately the closed form solutions

for the discussed joint situations. The error in the FDFA predictions is

restricted to within 5 percent, and the FDFA code is also applicable in

situations where closed form solutions are difficult to obtain. These

include non-metallic bolted plates, and general elastic constraints at the

fastener head and nut locations.

3.11 Effect of Single and rouble Shear Loac Transfer on the Through-the-Thickness

Load Distribution

The difference in the through-the-thickness load distributions between

single and double shear load transfer situations is demonstrated in Figure 3-18.

In this case, the bolted plates are made of ateel, and the 1/4 Inch diameter

steel fastener is assumed to be free to rotate at the head and nut locations.

The load intensity in a ply is quantified by -ku (lbs/in), and the load

intensity for a uniform distribution is expressed as P/t 1 (lbs/in) for the top

plate (plate 1). The load intensity ratio - kutI/P, therefore, is a measure

of the variation from the uniform distribution. Figure 3-18 indicates that the

load intensity ratio varies between -2 and 4 for the single shear situation,

and is approximately 1 (near uniform distribution) for the double shear

situation.

If the fastener head and nut locationr are constrained against rotation

(zero bending slope), the single shear situation also results in a near uniform

load distribution (see Table 3-2). In practical joivts, rotational constraints

at the fastener head and uut locations are introduced by the washers, and are

influenced by the fastener torque (Pee Section 3.6). Regardless of what the

enpirical elastic constraint equatiovs are at these locations (11 - R*), the

load intensity ratio will be approximately uaity in Iractical situations, and
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will not vary as much as in the situation considered in Figure 3-18. An
exception is a flush-head or countersunk fastener in which the head is

practically unconstrained against rotation. But, the FDFA code is currently

restricted to protruding head fasteners.

3.12 Effect of Fastener Size C-

The effect of fastener size on the through-the-thickness load distribution

is shown in Figure 3-19. The example assumes two 0.125 inch thick steel plates

to be joined by a steel fastener in a single shear configuration. The head and

nut locations of the fastener are assumed to be unrestrained (zero moment

conditions). Figure 3-19 indicates that for D/t 1 values that are greater than

or equal to unity, the fastener size has a negligible effect on the through-

the-thickness load distribution. For D/t 1 > 1, the load intensity ratio varies

from -2 to 4 as z/t 1 varies from 0 to 1. But, for D/t 1 values that are less

than unity, the fastener bending and shear effects increase with a decrease in

"1J/t1 . For D/t 1 - 1/4, for example, the load intensity ratio varies frcm near

0 to 10 as z/t 1 varies from 0 to 1. In these situations, the large fastener .

displacements generally result in fastener failures. C.

3.13 Effect of Fastener Material

Three fastener materials were considered for this study - steel,

titanium and aluminum. The effect of the material on the through-the-thickness

load distribution (load intensity ratio) is presented in Figures 3-20 to 3-22.

When D/t 1 is greater than or equal to unity, the material has a negligible K

effect on the load distribution. In this case, the fastener behaves like a

rigid fastener, and the differences amoag the moduli of the three waterials

have no effect on the load distribution. But, when D/t 1 is less than unity

(1/2 in Figure 3-21, and 1/4 in Figure 3-22), the fastener flexibility is

influenced significantly by the modulus of the material. In this case, the

material with the lowest modulus (aluminum in the chosen example) yields the

largest load intensity ratio.

3.14 Effect of Stacking Sequence on Through-the-Thickness Load Distribution

When one of the bolted plates is a laminate, the stacking sequence in-
fluences the ply load distribution and consequently the joint strength. To
illustrate this, selected composite-to-aluminum tests from Reference 3-6 are

considered. The selected test cases involve 50/40/10, AS1/3501-6 graphite/
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epoxy laminates of three different stacking sequences. The laminates are

0.119 inch in thickness, contain 20 plies, and are bolted to 0.31 iAch thick

"aluminum plates with 0.25 inch diameter, protruding head, steel fasteners.

The load transfer occurs in a single shear configuration (Figure 3-11).

The variation in the ply loads with a change in the laminate stacking

sequence was predicted using the FDFA code. The aluminum plate was divided

into 30 layers of identical pruperties (E- 10 Msi, v - 0.3). Each ply in

the laminate was divided equally into two layers of identical properties. The

20-ply laminate was, aerefore, modeled as a 4 0-ply plate with the following

properties: E1 -M 18.5 Hsi, E22 - 1.9 Msi, V12 - 0.3 and GC2  0.85 Msi. The

aluminum and compositeplates were assumed to be 2 inches long and 1 inch wide,

with the 0.25 inch diaketer bole at the center (E/D = W/D = 4). The effective

ioundation modulus for each ply type (fiber orientation) was computed as

-described in Section 3.5. This yielded an effective foundation modulus (kW of

28.8 Mai for aluminum, 30.5 Msi for the 00 ASl/3501-6 ply, 19.2 Msi for the

o 450 AS1/35016 ply, And 4.76 Msi for th 90 ASl/3501-6 ply. The

elastic constraints at the fastener head and nut locations were assumed to be

of the form shown in Equation 3-160 and the disk radius In Equation 3-15 was

* assumed to be 1/8 inch.

* Using the above input data, FDFA predicted the ply load distributions in

50/40/10.layups of three different stacking sequences -- C(45/0/-45/0)2/0/90Js,
L+45/0 /4"45/96]. and [90/±4ý5- /0,5r2.iti e3-23 shows how diLfferent the :

pLy loads are,when the stacking sequence is varied. This also has a direct

i nfluence on the joint strength.

F4.
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SECTION 4

STRENGTH ANALYSIS OF SINGLE FASTENER JOINTS IN COMPOSITE STRUCTURES

4.1 Introduction

The two-dimensional anisotropic plate analysis described in Section 2

(FIGEOM) and ,the finite difference fastener analysis described in Section 3

(FDFA) are incorporated Into a failure procedure to develop a strength

analysis for single fastener joints in composite structures. A general

fastener location in a bolted structure (see Figure 1-1) involves the type

of loading shown in Figure 4-1. The general situation can be analyzed as a

superposition of an unloaded hole situation and a fully-loaded hole situation,

as shown in Figure 4-1. The unloaded hole case is analyzed using the two-

dimensional plate analysis (FIGEOM), and does not involve the fastener analysis

(FDFA). The fully-loaded hole situation involves both the avalyses, and

Section 4-2 describes the.failure procedure for this case.

The loaded ihole situation is analyzed using a progressive failure

procedure that predicts local ply failures and delaminations until the bolted.

plate cannot carry any additional applied load, The employed ply failure

criteria and the delamination criterion are discussed in Sections 4.4 and

4.5, respectively. The strength analysis has been programmed to be the

SASCJ. (Strength Analysis .of Single Fastener Composite Joints) computer code.

"Sample. strength predictions using SASCJ are presented in Section 5.

4.2 Strength Analysis Procedure for Fully-Loaded Holes

SThe strength.of laminates with fully-loaded holes is predicted using

, the procedure outlined in Figure 4-2. A two-dimensional stress analysis

(F-IGEOM), accounting for finite dimensions of the bolted plat.s, is initially

performed on each bolted plate. Computed plate stresses are used to calculate

the effective moduli of the various ply types in each bolted plate (see

Section 3.5). The inplane strains computed by the FIGEOM code are used to

obtain the stress state in each ply. The ply stresses around the hole boundary

are integrated to yield the bearing load in each ply (see Section 3.5). The

inplane stresses, in:each ply, per unit bearing load, are incorporated into

selected failure criteria to compute the ply (bearing) loads corresponding
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to the various inplane failure modes. The selected failure criteria are pre-

sented in Section 4.4.

The effective moduli and the ply bearing loads corre.ponding to the

various failure modes, for all the plies in each bolted plate, are incor-

porated into the fastener analysis described in section 3, The initial

fastener analysis on the undamaged plates assumes the i terms for all the

plies to be zero (see Equations 3-^" to 3-28), and computes the distribu-

tion of the applied bearing ir ;dmong the various plies. Comparing these

r.!,, loads with the storec' Ailure values for inplane ply failures, the

joint loa.. -. r"-'r- iing to the earliest ply failure is obtained. The

fastener analisis also computes approximate shear strain values at the inter-

facial locations between adjacent plies. Incorporating these into an inter-

laminar failure criterion, the joint load corresponding to the earliest inter-

laminar failure (delamination) is obtained. The smaller of the two joint loads,

corresponding to the earliest inplane and interleminar failures, determines

the first failre in a bolted plate and the corresponding joint load value.

The effective moduli of the damaged plies are reset to appropriately

represent the predicted failure modes. The revised moduli are incorporated

into the fastener analysis, and the procedure is repeated to predict the

next failure mode and the corresponding joint load. When any ply is pre-

dicted to fail totally, the analysis computes the redistribution of the

corresponding joint load among the remaining effective plies, and determines

if any other concomitant ply failure is precipitated. This process is

repeated until one of the bolted plates becomes ineffective in transferring

the applied load (joint failure).

The SASCJ computer code is restricted to protruding head type fasteners,

and assumes that fastener failure is precluded. It can analyze any combination

of laminated and metallic plates, bolted togethar in a single lap or double

lap configuration.

4.3 Strength Analysis Procedure for Partially-Loaded Holes

A general fastener location in a bolted plate transfers a fraction

(a) of the total applied load via the fastener, the remainder (1-ct)*being

by-passed to the next fastener location (see Figures 1-1 and 4-1). In this
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case, the stress state at the fastener location is computed as a superposition

of the stress states corresponding to the unloaded and fully-loaded hole

situations. Figure 4-3 presents a schematic representation of how the averaged

stresses are obtained to predict net section, shear-out and bearing failures

in the plies using average stress failure criteria (see Section 4.4). For a

unit applied load, the averaged stresses in the laminate with an unloaded

holh0e, when subjected toa load of (I-a), and the averaged stresses in the

laminate with a fully loaded hole, when subjected to a load of a, are com-

:puted separately and added. Incorporating the combined averaged stresses

into :the appropriate failure criteria, the applied load corresponding to a

ply'failure is computed.

In the case of fully-loaded holes, progressive failure prediction

involvec the repetition of the fastener analysis with revised ply properties

after every ply failure. The two-dimensional analysis (FIGEOM) is only

Acarried out once (see Section 4.2)'. But, in the case of partially-loaded

holes, a ply failure will affect the unloaded and the fully-loaded hole con-

tributions to the local stresses, Hence, progressive failure prediction in

the partially-loaded case- involves repeating FIGEOM and FDFA analyses ,after

total ply failures.

4.4 Inpiane F~i~lure Criteria,

The SASCJ code permits the:user to select any of the following five

failure criteria for the prediction of ply failures based on inplane stresses

and~ strains: (1) point stress failure criterion, (2) average stress failure

criterion, (3). maximum (fiber directional) strain criterion, (4) Hoffma

criterion, and (5) Tsai-Hill criterion. The first two criteria predict

three modes of failure in each ply--net section, shear-out and bearing. The

maximum strain criterion predicts ply failure based on fiber directional

strain, The Hoffman and Tsai-Hill criteria predict ply failure accounting

for biaxial stress interaction that is ignored by the first three criteria.

The point stress failure criterion predicts net section, shear-out and

bearing failures when the appropriate stress components at selected locations
" .attain unnotchedspecimen failure values (see Figure 4-4). aons asoS and abrg

are, called characteristic distances (see Reference 4-1). When a (0, D + a as
"x 0

exceeds the unnotched tensile ocompressive strength of the ply, as appropriate,
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+
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e's=(f o,oy) dy - +__ ,al

D/2

d 08 so

T0 TJ % (xD/2) dx T, 0Tc + 7

D/2 + d obrg 0 xod ~~+~r
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Figure 4-3. Strength Analysis of Laminates with Partially-
Loaded Holes using Average Stress Failure
Criteria.
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brga net section ply failure is predicted. When ax(D + a 0) exceeds the un-
S0notched compressive strength of the ply, a bearing mode of ply failvre is

predicted. When T (as, D/2) exceeds the unnotched ply shear strength, a
xy 0

shear-out mode of ply failure is predictcd. The average stress failure

criterion predicts these failures based on averaged values of the mentioned

stress components over selected characteristic distancee (dons, d so and dbrg)
00 0

that are larger in magnitude compared to those used in conjunction with the

point stress criterion (see References 4-2 and 4-3, and Figure 4-5)

Of the three ply failure modes, only the net section mode causes the L

ply to become almost ineffective (total failure), The bearing r-ode of

failure causes the ply to suffer a reduction in its effective modulus

without losing its load-carrying capacity. The shear-out mode of failure

causes a ply to become ineffective only when it is delaminated from the L

adjacent plies (see Section 4.5). When a ply suffers any of the above

failures, its load versus deflection response is at the knee of the bilinear

representation in Figure 3-8. The damaged ply can carry additional load

until total ply failure is precipitated. The SASCJ computer code auto- L.
matically stores the damage state in every ply in the bolted plates, and re- 6'

assigns values for ply moduli to appropriately represent predicted ply

failures. When a ply suffers total failure, its modulus is set equal to

zero (see Equation 3-11), and the redistribution of the joint load among

the remaining plies is computed. A typical overall load versus deflection

behavior of the joint is shown in Figure 4-6, indicating the effects of local

and total ply failures. 4.

The maximum strain (fiber directional), Hoffman and Tsai-Hill criteria

are applied along a path that is concentric to the fastener hole, at a

characteristic distance (a ) from the hole boundary (see Figure 4-7 and

Reference 4-4). The location along this path where the selected criterion

is satisfied determines the failure location., The maximum strain criterion

predicts fiber failure in a ply (total ply failure) when its fiber directionaltu ,u

strain exceeds the failure vaLue (efl or er).
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Total ply

Joint failure
'Joint (failure of one,
LboAd: of the bolted

plates)

1Non-catastrophic failure

L

Joint Deflection

Figure 4-6. A Schematic Representation of the Overall Load
Versus Deflection Response of the Joint.

concentric path budr
'along which the
failure criterion
is 'applied

a4
0

Figure, 4-7. 'The Characteristic Distance (a )Defining the
.0

Region, W1here the ?4axi-'jm Strain, Hoffman or
H~ill Criterion Is Applied. ~

82

-----



The Hoffman failure criterion, based on inplane ply stresses, States

that total ply failure will occur when the failure index (H) in the

following equiation ra*.ches a value of unity: Yi:
2 2

I- oIo2 )fX + Xt (Xc-X t)/xcxt + c Yct + 02 (+ cYt)//c Y t .

C /s2 H (4-1) I°

In the above equation, OV, C2 an! u are the ply stresses in the fiber

coordinate system, X and X are the uniaxial tensile and co=mressive

material strengths along the fiber direction (1), Yznd Y are the uniaxial
C .

tensile and corpressive material strengt', perpendicular to the fiber

direction (2), and S is the material shear strcnpth in the 1-2 plane.

In the SASCJ code, the Hoffman criterion is applied along a path that

is concentric to the fastener hole, defined by the characteristic distance

a (see Figure 4-7). At selected points along this path, the following

expressions for the failure value of the ply load (Pf) are computed:

P -(-b + Vb-4ac)/2a
f

where

a a [ -OiO 2 )/XcXt + a2/Y t + /S2] /P2

(4-2) ".i

b = Xc-X )CFl/XcX + (-f -Yt)C 2/YY I4-2'

c -1, and

P M ply load at which 01, 02 and 06 are computed .
2 6

The location where the smallest non-negative value foz P is computed

identifies the failure initiation point.

The Hoffman criterion predicts total ply failure and the failure

location, but does not identify the mode of failure. The failure location,

though, generally indicates the possible failure mode. Referring to ...
Figure 4-7, if failure is predicted near 8=0°, a bearing mode of failure

is suspected. If the failure location is near e-90°, a net section mode
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of failure is suspected. And, intermediate values of 0 indicate a

I shear-out mode of failure. The Tsai-Hill criterion can be obtained from

:Equation 4-1 by setting X t and Y = Y . This criterion, therefore.

'does'not account for different strengths under tension and compression. The
ply failure load (Pf) in this case is computed to be I/ r (spe Equation 4-2)

4.' , Interlaminar"Failure CrIterion

"Delamination between plies is predicted by incorporating computed

shear strains at tthe interfacial locations into a maximum shear strain

criterion. At the' interface b'etwen plies i and j, for example, the shear
"strain is 1computed to be:

*(U. -U) /ha (4-3)

where h is the ply thickness in the plate containing plies I and j. Thus

expression for.the shear strain is approximate. Plies i and j are assumed
i-!-to delaminate when -y exceeds a failure value. The failure value for

i .. will be d.etermined by correlating predictions with observations for a
sample test' case.
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SECTION 5

STRENGTH PREDICTIONS USING THE SASCJ CODE

5.1 Introduction

Tle developed strength analysis for laminated and metallic plates

(SASCJ code) requires as input a few failure parameters and post-failure ply

property degradations (see Section 4). Section 5.3 describes how these

quantities are determined. Subsequently, the validity of the SASCJ code is

established by comparing its strength predictions with experimental measure-

ments (see Sections 5.4 to 5.6). Test results from Reference 5-1 are used

in the determination of the mentioned input properties and for establishing

the validity of the SASCJ code. Figures 5-1 and 5-2 present the geometries

of the bolted laminated and t,etallic plates used in Reference 5-1. Table 5-1

lists the various static tests conducted in Reference 5-1.

5.2 Initial Studies On Failure Parameters For Laminates With
Unloaded (Open)_Holes

The strength of laminates with unloaded or loaded holes has hitherto

been predicted based on a one-step procedure. The laminate or the individual

lamina stresses or strains are incorporated into a selected failure criterion

to predict the laminate strength. The procedure does not go beyond the first

ply failure when lamina stresses or strains are used to predict laminate

strength. This strength prediction procedure results in failure parameters that

are dependent on the laminate layup, and requires modificaiton of lamina

properties to preclude "non-critical" failures. Examples are presented below.

Consider a laminate with an unloaded (open) 5/16 in. diameter hole

subjected to static tensile or compressive loading. At the laminate level,

the two-dimensional laminate stress state around the fastener hole is in-

corporated into a selected failure criterion to predict the laminate strength.

The point stress and average stress failure criteria have been used before for

this problem (see References 5-2 to 5-4). The characteristic distances for

net section, bearing and shear-out failures, respectively, that make SASCJ

predictions agree with the measured tensile strengths, for three laminate

layups, are presented in Figure 5-3. The axial t2nsile and compressive

strengths, and the shear strengths, of the laminate layups were computed
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TABLE 5-1. 'STATIC TESTS CONDUCTED, IN REFERENCE 5-1.

1ATN TYPE IBEARIFE/ I A~t UM
TEIS INE IAMETE11 016ST VIDIN PA" FASTENER OF ITOTAL LOAC SPECIMEN BLOC.. CSk RW.CAE PL 9 (in) II (in) 1 1on) N uSER DESCRIPTION I.OADING IRATIO IOIJITIFICATION TPE DEPh IMK

I O 0 1.2S 10.7S 1.50 Sl 514 (A4-4* Tension 26 1 .A73;1.873,.I.C73 A - -

2 20: 0.3125 10.93751 .875 515464-5" - Tension 1 I.A1,1.8ZI;I.C4I

-3 2 .0 15 3.010 0651464-W* - Tmnsion, 1 1.A7S..1.75.l.C7S C

4 20 0.7S 12.25 14.50 515U64-12A8 - Tension 1 1 .A77;1 .877.1 .C77 D

5 20. 0,.2S. 0.75 11.50 S518464-4*8 Capp. 1 I.A740;1.7401.C4 A -

.6 * 20 :oýiis :0.931S ý1.875 S518464A198 Comp~. 1 I *.20.11.22;1 .C42 8

>J.~ I20 00 1.50 31.00 518464-110 ;Ee .7;.7..7 C I

a 20 0.75 2.25 4.50 maw-law2A8 Cov. I I1.A78;1.S78;1.C78 0 -

9 20 .0.3125 10.46a8 1.875 518464 S"l - eso '..:1831C3 8 - /..
10 2 0.3125 Teso 3112;.4 /

10 2 .1S 07031 1.875 51846 4.5AII Tension 1 .A4;l1284;I.C4I S -. /P.2.25

11 20 .3125 25 1 75 51864-5*8Tension 1 .AS;1.8251.C5 S *[04.

11 20 0.3125 1.525 1 875 5181464-5*8 -. Tnin 1 1.81861.C4S I *-/0-4.0

13 20 0.312S 0.4698 1875 518464-SA8 Tension 1 2.1.2.21;2.31 1 .. [1.1.5

14 20 0.312S .' 1 52 1.875 6111440-1M Tension 1 2.2-.2.22;2.
3 2 1 *- S0.0

15 20 0.315 S 0 ,9375 1 875 S14335.9 . Csk-T Tension 1 2.3;2.23.2.33 8 .10 -

111 ) 20 0.3125 . o. W Cs k-S Tension 1 .4 -.. 24
;2.

34  8 .07 -

1 20 0.3125 10.4688 1.375 5)946'4-548 *. y8~I~ jjjj ..

is 20 0.312S I1.5625 11.875 S118464-5*S - enio 1 3.2.3.22;3.32 S [/O.5.0

19 20 0315 .37 185 $9359 skT esin, 1 3.303.230S.33 8 .10

20 20 0.,312 25 0.937S 1.11M, S181S Ti-Cit-S Tension 1 34.Z ) 3  8 .07

21 2 .0.3125 0,.9371 i 1.875 S14458 - Tension 1 Z.110.2%~2.311S

20 X 0. 31:2S .0.9375 f.875 s1844-SW - Tension I 3.5;.2.S;3.3S

j 23 20, 0.3125 I03376j.1.875i 518464-SS j COMP 1 2.6.2.
2
6;2.

3
68 --

24 2 0325 I0.937S., 147.S S ".51464-54m C-0. 1 .;.2 . S

2S 20 0.3125 0.11375 0.42 51 84164-5* * Tnso 1 1.011.1.mg61..cl71/-

25 .1.32 0.1937S 1620 511464-548I -. Tomilien 1 I ."?7.1 .71 S.C6M 11/W0-4

2? 20 0.312S 10.937S 2.50 S 18464-SA8 - Tension' 1 I.A49;I.SS7.1.C69 6 /.

2X *20 0.3125 0.93711 1.8751 51833-9 Citk.? Tensioo 1 I.1.130 1I..C2 1 .10

n9 20 . 03125 0,937S [1.075: IISIS -Sl-0 Csk-S Tension 1 I A20;1.81it~1.C3 1 .07 -

31 20 0.312S 0.437S 1.2S0 S184644.5*8 Cp., I 1.A70;1.M~al.C70 ~ . W/0.4

32 20 0. 31215 0.9378 2.5 1144.* *--s Cap. I IA l80lCS a 1/0-4

3 20 .~0.31 2S 0. 937S 0.62S 5184464.44 All Tens0IGO 1 2.40-.2.46.2.116 ,'.
0.312.5 . 0,9375, 1,2501 S18464-SAG it ___ 11425 F I V/0-4

NOTE: AllI test cases 'Nov* [/0.3. 11,06. Protrdifng fIed steel fasteners torqved to 100 in-lbs. row-iterebre dry test
contj1Iton an& sein qIeI-lop Con'figu4 rration. ujn'e@%speKifIed otherwISe.
£58-I - Tension Meed Cowntersig~ 21W1 - 211rF Wet, OH - open HOle ?I - Titentita
£55.5 - Sheer Heed Countersink 3111 - Moin T . Vat Il - Double Lap Al * Aluminum.
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IAB1I:' 5-1. STATIC; i-:S1S CON!TW TED IN REF.FMWRNCE 5-1 (Continued)

I~c rkl Ty flt 161'"T 'a,' At 79
ErST XJ(R or DI~fl'iU 023? PANT FAsTt f5 or TOTAL IOAJ' spFcimm It Oct s I
C,~ PL IE 0 (in El((i) W (ind in.5E D(SCRIP7 1014 LOADING.~ 0PI4 AIAP

35 0Z 0.3123 0.9375 2.30 S19464.50W -- Tenssion I 2.42;?.SO;2.31 6 - W/0-8

36 Z0 0.3123 0.9373' 1.67S 319333.9 CikT. tension I 2.43;2.3142.39 1 .10 2151W

37 I 20 0.15 0.047S 1.875 KASTISSYSI 1TCsk-l Tension * .10:.6;2G 21
t-W I --13 097 02 134S C-P.- 1 2.45;2.S);2.6I W 1/o-? 218W

39 20 I0.312S 0 9375 1.250 31404-50 W* como 1 .44;2.54.2.62 F W.1/0.4 2181W

40 20 032 0.3S18S S146- Mcamp. 1 2.47;23.352.63 8 2151

4 O 0.312S .97 0.62S S18464-W08 - Tension 1 3.40,3.48; 3.3 M W/ D2-

42 ?0 0.312S I09373 1.250 319464-SM. Tension 1 3.41-.3.49;3.S7 W/D*-

3 0 0.312S 3137 2 4S4S4p-SM * Tensison 1 3.42:3.30.3 so 6 W

44 ?0 0.312S 0.937.. -15J Sl1335-9 csk-T Tension I 3.43;3.;3.S39 a .10 f1low

43 20 0.3~~~~12 0.9373 1.87S I HASi 4559 tC&? TOIR I 
1 14

46 to 0. 323 0.9375 0.625 S1846A-SA.S * CM. 1 3.4S;3.1.3.3.61 I *- -2 21811

47 2 0.3123 0.9375 1.250 519464-SAS C-. - 3.4613.340.62 11/0-4 VAN1

46 to 0.312S 0.9373 1.073 318464-501 ca" 3.470M.513.63 flow61

49 20 f0.3123 0.9373 1.81'3 318464-348 - Toosless 1.8711 .227;.C47 To- iqso-0

s0 20 0.3,123 :.937S 1.673 S18464-S06 Toertle. I.A80.82801C48 Toef9UOO3O

51 to 0.312 0.9373 l.873 318464-3AM Tom~e to 1A1.21C9I -ToroOOISO

52 20 0.31 23 0.937S1.I873 S11844-SAI Tensslee 1 .Al0;l.8j0;.ICS0 ITerowro20

S33 2 0.312S 0.937SI 1.87S 818464.5-*SAM cam. 1 .la.81IS Toe-quo-

34 20 0.3123 0.937'3 1.875 518464-51 CO RP. I 1.39111.UIO.A111 - Torqu"?20

0.3125 0.931S 1.6'S MAIiSSYS TilCik-? Tension I 1.89211.94401A16 .10 -

S4 20 0.312S 0.937S1 1.87 ASlISIV T1;csk.S Ternloem 1 1.69113..U47&.A17 .0?

37 20 0.312S 0.93715 1.873 511464-S08 * Teas Ion 1 4.1;4.4;4.? 8 -

50 9 20 0.12 09373 1.871 619464-544 Teesslo. 1;37.

61 20 0.312S 0.93731 1.17S1 I 18,4640-50 Toslon 1 .1.3158 -.

u 20 0.3123 0.9373' 1.873 314640-SA8 Te"son 1I 9.106.301.6 .

631 20 6115 O9?3 .7 184433498 s. Tenslom 1 4.11 4.3161 .-

62 20 0.3125 0.9371' I.7 ML22-10-98 Al tensoo I 1.1~9318.130c I

to 2 0.312H 0.9316 1.1171 H183.10- AIICsk-? Tjoafto I -10M8.1.03401.C0 1 .10

87 20 0.3125 0.9373lIN 1.6 3 1 Mll TI;Csk-T Co. I 1 -005..831,0155I .10 -

6G87 20 0.3123 0.937 1.87S3 MSIISS344 , TI;Csk-T Tonsloo 1 4.3;4.6;4.9 8 1 ________

NOT: All test cases have 1/0-3. U1/0-6. proWdrl~ head $teel fostawtes toe-quad to 102 In-lbs. romb-tompraetwo dip tint
conditions Sol sinlole-lap conllquatlon. "los eswecf led terwi~se.

*S- Tension Neef countersink l1ar - 218 F, Net ON - open Hole III * Tiltsntm
CSA-S *Sheer Need Canturslok A1TM - Now Tem. Wet kL - Daesl Lop Al - Ahwatis
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TE UMPM[ Of 0 IAMFT(R 01STf I FIT i4ýTf~ 61 0 ( TfnA
4 

LWiA SPFUWI 91L NxiCSK.
tAmj tý'V 1 l)' 0m), ' Ulý b.' tl) is "t OESCRIPTIýr. LA RATIO 1NNTIFICA11ION TYPE ET tAI_

6q 20 . .312S 0.0375 1 875 MA 11l14A 
7
l;teI.T Toin I 1.?77 A 7.6 6 o9

20 0o. 31is '0.917 1.875 NM'1ISSVS . T.Csk.T Tension 1 3.703.2703 37 9 .10 -

721 0.3125 0.975 I.8V5 51 335.'r Cik-~t Tel~nsion 1 I .9110ý.AI9.1m5 j .10 It 14

o0 .3125 0351,875 MS I ISN15V Tf.Cek,-T Io~e~ 1 l96,It4157 9 .1 1

-7~.., 4 00 0,15 9315 1.815 51833% C'"77 Ten lf)ý I 1 . 0.4.11380.08 .C S Jo 21814

n%. 2 0,3125 i0_937S 1.875, 51S33- camp 9 .10 1 218W
76. 10o 5 1.30 3.003 f18730-13 csk-r 

T
ensione I l..f..O5 1 2

17 f 0 75 T2 ~I596-21 - lension 1. l11.101.1.1115 1 . -

78 4 0 Sc 1 50 3.0 5191k.1 TQ7 ,ension 0 2l1..254 .2

79 bo 0.75 L.25 4.5 51?464-12A15 Tension. 13,1013.3;13.s

Ac 40 0,5 1k 50i 3 0 S13332.13 (s I Tensio 1 14.' ;l4.31C.5.20

81 60 0.75 2.25S 4 so 5194FA.12089 -1 l51l.;1. . -

X, 2 0ý3175 ý0.9375 1.875 5114644W !wse 1 1.99O'l.84O.1.C6O 3 I OL

3 ' 0.31i5 0.375 1 .875 5:8464-_8W Tension 1 822 3 - m
84 0.3125 0. 9375i 1.875 15 6464-M W ~~. Caft.3 I .- 10-1:1Al DIL

25 0 j0.3125 lu3511.875 T1944-5.6 a ~ I.S1404~.014.A68 .1 -.

87 20 0.3125 . .1.875 S156.. M Te- imon 0. 16 1.8M1.90,111.510,A11

.0 .1 125 -. 1 . 817 S 51 14 94 .58* T m loin io .1a 1 2 1 I .A 8 50 1 R.I l.A S 1 -

89 20 0.3125 '- 1.875 pSlI464-92 *- 'OIo .37S 1 .A8?J1.8S3;IAS

90 1 20 0,312S 1.8"5 T. - ension! 0 I2.75.2.0J;.71 -. M

9.1 20z 0.312S ~ 1.875 41111335-9 .Csk-T ?laf 0. 161 2.64;2.U'.2.72 -. .10

9? 20 10.312S - 1.875 1018335-9 C-T TentoniO0. 287 7.61'.2.69.2.73 .10 j -

t93 20 0,03125 . 1.875 SIM1833S-9 TirailoaJO.37S 2.66;2.70;2.74 - .10 -

94 20 0.312S - .7 . . Tmo 0 17..731 .C

9S z 2 0.3125 *- 1.875 M~t18~- Cs0-S.Tl Theslon 0.7 3.6403.6803.72 - 07 j -

96 20 0.312S.~ 1.87,5r IA315VS-ii Csk.S T11 Tn toIoAJO. 27 3.65.3690.73 I J01

97 20 0.3125 -- 1.575 11ASI SS1V54 Css-S.7 Tons Ione0. 37S 13.66.3.70..4 - .07

98 0 O.IM325 . 1.875 camp . 0 I.A88;1.154.1.A54 ON 0

99 20 ; 0.3125 *- 1,976 ISIS44U-5 CM. 0.2 I.A89;11.3151.ASS -

to 20 , 0.3125 S 1A75 510464-SM, Como. 0.33 I.A90.11.S41.A6 -

102 20 0.312S 0 2.76-.2.79..2.92 ON

12 0 0.:51.81S 61119315-9. Csk-T 'Cpp . 2.77;2.8b;2.83

103 20 0,3125 1. 1.875 1 5833S-9 Cs&- Cop. 0.33 2.78-.2.61;2.84.M

I0 20 1.616. :j; A~SlV~ I;. Camp. 0 20 3.7110.790.6.2 ON
l06 ?o ..12 ' ' .MSISSIVS40 11.CS&-S COup. 0.33 3.77.3.0;3.83 *- .07

NOTE; All test c Set have t/CM3 '1110m4 imotrwIlaq; ted Stool fag tews twaed to 100 In-bS a*outpuetur* dry test
comitiwsetAd 144114- so confi ~teati6ni ., M S ipecIffed otieruli.
Cuk-S .Sheer itood Cowntasink, . 'Th imo. Metý Al - Aletmlow
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I AVERAGE FAILURE POINT STRESS AVERAGE STRESS
LAYUP1  TEST CASE22

(REF. 5-I) LOAD(KIPS) CRITERION 2  
CRITERION

2

(REF. 6-1)

3,
50/40/10 as " 12.9 son$ - 0.024 In. oe* 0.06 In.

70/20110 00 20.8 @en - 0.047 In. acni * 0.146 In.

530t80/10 04 10.3 acnei - 0.024 In. acent 0.065 in.

Percentage& of 00 t45 and 900 plies. respectively
2

Figur 5-- 0.025 In. Pand ar 0) fO.08 in. for every caLel P t

3 0Xtl , Xc and S - 125. 150 aind 45 kill, resipectively '

4 X! . X c and S - 165, 175 and 30 kisl, respectively

5 Xt I, XC and S - 05. 108 aind 00 kill, reslpectively

Figure 5-3. Failure Parameters for the Laminaite Level Prediction oft
Static Tensile Strengths of Laminates with Unloaded (Open) 0
5/16 Inch Diameter Holes.

91



usinz laminate theory and AS 1/3501-6 properties from Reference 5-5. The

characteristic [distances that make SASC., predict ions agree with the measured

"c,'presýsivc strcngths art, presented in Fivure 5-4. Predictions in both cases

,ire sensitive only to tie a. value, since the laminates fail in a net"(ins

section mode'. The a vaIiue for the average stress criterion is approximately
ons

2.5 times the value.for the point stress criterion, as observed in Reference 5-2.

Note thatt a -for the highly fiber-dominated 70/20/10 layup is much larger than

that 'cr the 50/40/10 and 30/60/10 layups under tension.

The tensile and: compressive strengths of the laminates with unloaded

/ inch diameter holes can Ilso be predicted at the lamina level,

based on first ply failure. The point or the average stress criterion (see

Figures 4-4 and 4-5), the Hoffman, Tsai-Hill or the maximum strain criterion

(see Figure 4-7) may be used.at the ply level. Laminate failure is assumed

to be precipitated by the firstmajor ply failure. When the Tsai-Hill cri-

ten'on I'S USed, matrix failures between fibers are precluded by setting the
4

transverse tensile and compressive strength for the ply to be large (10 psi).

"lien the maximum strain criterion is used, only the fiber directional strain is

interrogated, When the point andaverage stress criteria are used, the

streng;ths of the +45, plies are increased to twice the actual values, and the

transverse tensile- sttength.. is increased to preclude matrix failures between

fibers in the 900 plies. Figures 5-5 and 5-6 present the characteristic dis-

tances that make SASCJ predictions agree accurately with the measured tensile

and compressive strengths of three laminates with unloaded (open). 5/16 inch

diameter holes.

The above examples clearly indicate the need for the progressive ply

failure rocedure in orporated In. th SASCJ code.. The one-step laminate

level failure prediction leads to the dependence of the failure parameters on ,

the laminate layup. Tile one-step ply level failure prediction requires the

modification of actual lamina properties. The progressive failure procedure .

in SASCJ provides a means for using invariant failure parameters and ply

property degradation rates to predict the strength of bolted laminates. An

example. is presented below.
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LAYP1 TES CSE AVERAGE FAILURE POINT STRESS AVERACE STRESS

(REF. 0-1 LOAD(KIPS) CRITERION 2  CRIT.ZRION 2

50140110 9-13.4 sn 0.0191n. son@ 0.046 In.

4

70120110 101 -1.6 a*g*.2I. a~ 0.07 In.

30/00/10 104 -10.5 a .0.025 I. a~,00Sn

Porcentagoa of 00 .t4S and 900 pliaa, respectively

2
a M 0.025 In. and a 050 0.06 In. for every cote

3 xf X and S 125. 150 and 45 Wa. respectively

XIx and S 16 5, 17 ?a nd 30 h al. respectlvely

5
* Xc and S 9 5. 100 and 60 hal. roapectively

Figure 5-4. Failure Parameters for the Laminate Level Prediction of Static
Compressive Strengths of Laminates with Unloaded (Open) 5/16
Inch Diameter Holes,

,.J.
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LAYUP AVERAGE,, CORRELATION PARAMETERS (INCH)
(M OF 00. TEST FAILURE H AVERA2E

a450 and 900 CASE [LOAD (KPS) L . L . MAXIUM POINT STRESI STRESS
PLIS) (REF. 6-1) (AEF. 5) I FIBER STRAIN CRITERION" CRITERION

3

50/40/10 186 1 12.4 a 0 e. 0.02 'a 0 0f.42 I a&ne-.0.15 &on$ .0.035

"70120110 90 20.8 01 .0.045 a .0.0465 a -0.038 sn*" 0.11

30160/10 94 10.31 a~ 0.025 a0 .0.025 a* I001 a~, .3

0 n 00 on& 0.035

Only fiber dgrectlonafnand shear Wodrse arw psimltted

X, Y end S P 230.2"10 and 173 aksl, respectlvely

- 0.012 (ONLY FIBER FAILURE CONSIDERED)

a 0*.0 25. am .0.08 In.

•: Xt, Xcland.$ (O0 ply) - 230. 267 and t7.3 hkl. respectively

X 1 . ýXc and S 4(50 'ply) -95 0.38.0 and 17.3 hAl respeoctIvely (modgfled)

Figure, 5-5. Failure Paramet',ers for the Ply Level Prediction of Static
Tensile Strengths of Laminates with Unloaded (Open), 5/16
Inch Di~ameter Holes.
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LAYUP AVERAGE CORRELATION PARAMETERS (INCH)
(% OF 00. TEST FAILURE AV•RAG

t45o and Q00 CASE LOAD (KIPS) HLL A MAXIMUM 2 PORNT STRESS 8TA

Pt:3) (Rel. -I) (REl. S-I) FlIER STRAIN! CRITERION3 
CR.TEn 3

50140110 98 -13.4 ea o 0.013 aO. 0
.00 5  

10fa1"0.013 alO.030.0

7'0120/10{ 9011 -17.5 a O .0.022 &.o - 0.010 am#• o0.016 a on$- 0.041".

30/60110 104 10 S 'O .0.016 1 " 0.004 lione -0.014 aionel0.029

Only fiber dkreclloral and Shear fellures are permitted

X, Y endS "- 267, 1 0 d and 17.3 kol, respectively

xt 0.017 (ONLY FIBER FAILURE CONSIDERED)

3 OMG. 0.025. OS* 0.08 in. .

XI , X and 8 (00 ply) - 230, 267 and 17.3 kal, respect0vely

Xt. Xcilnd S (-t450 py ) - 100. 100 and 190 kiel, respectively (modified)

X 1 X€ and S (60° ply ) - 95, 38.9 and 17.3 kal, reapectvety (modified)

Figure 5-6, Failure Parameters for the Ply Level Prediction of Static S

9%, IQ

Compressive Strengths of Laminates with Unloaded (Open),
5/16 Inch Diameter Holes.



5.3 Pt. t'vt ',nt Iton of i iji uro Paramte_ r

Co I~ ier a laIina te that transfers an applied ten:;ile or compressive

"lead in dotible shear via a fastener (see Figure 5-7). The strength of this

lamnate is predicted using the progressive ply failure procedure in SASCJ,f assumin, bilinear ply behavior (Figure 3-8) and average stress failure

rtrii.The s trengths of the +45 0 plies are computed using lamination

theorv. For each ply failure mode (net section, shear-out anýd bearing), a

* Characteristic distance (a , a or ab) a k value and a ultmte
ini L i ial oso 2b

P value have to be determined. Figure 5-7 presents the nine

parameters that yielded SASCJ predictions that awreed with the vxpekrici'i,,il

observations and measurements in Reference 5-1, including laminate .. trength

ti:: -ii and failure modes. Note that only.one failure parameter (an) had to be

changed to make predictions correlate accurately with measurements corres-

pionding. to the,30/60/10 laminate. If the a value for the tensile-loaded
ons

30/60/10 laminate is not changed from the 0.10 inch value, only a 17% error

will result in the predicted strength (see Section 5.4).

Failure par Iameters .Sbased. on a linea~r ply. behavior (k /k1  0, ultimate,
initial21.,• 1) and the Tsai-Hill criterion or the maximum strain criterion

* are also p',asented in Figure 5-7. These values, corresponding to the fully-

loaded hole situation, are seen to be different from those corresponding

- to the unloaded hole situation in Figure 5-5. They are also very dependent

on the laminate layup.

SBased on the above results, it is concluded that the progressive failure

* procedure.using .the -average stress failure criterion and bilinear ply be-

havior is the best choice among the studied maethods. Therefore, subsequent

i correlation studies are performed using this procedure with invariant failure

p : arameters and ply degradation rates, The invariant properties are obtained

based on imposed correlation between SASCJ predictions and test measurements

corresponding toa double shear (full-buaring) load transfer configuration.

5.4 SASCJ Strength Predictions for Laminates with Fully-Loaded Holes
ina single Shear Load Transfer Configuration

For ASI/350.1-6" graphite/epox" lIinates, toqted in Reference 5-1, the

various failure parameters obtained through a trial and error procedure are

96
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LAYUP CORRELATION PARAMETERS
(% OF 00, TEST AVERAGE FAILURE

1450 AND 900 CASE LOAD (KIPS) I MAXIMUM 3
PI.(S) CEF. 8-1) (REF. 6-1) HILL FIOER STRAIN2 AVERAGE STRESS

60/40/10 82 4.748 go. 0.095 So- 0.085 sons-0.10

70/20/10 83 3.078 go . 0.12 so - 0.03 aSon . 0.10

30/80/10 84 5.967 so -0.155 0o -0.13 song - 0.16

50/40110 85 -6.494 a.- 0.185 So- 0.076 fons*0.10

Only fiber fsaiures and shear falhures were permitted.

XI , Xe , Y1 . Ye and S - 230. 267. 10 4. 10 4 and 17.3 kal, respectively

2 d u 0.012 and ecu - 0,017 (only fiber failure considered)

3 mobrg0.025i sogo. 0.08; It 1kI for net section. bearing and shear-out - 0.1 for all ply type*&

P ull/pP *ir 1.02 and 1.50 for net section and bearing, respectively

pUlt ipIr"tl ,, 1.12 and 1.80 for shear-out under tension and comrpresslon, respectively

X1, Xcend 8 (00 ply) .230, 267 and 17.3 kha, respectively

X1. XCend 8 (460 ply) 40. 47 and 95 ksil reapctivl

Xf AXc and S (90° ply) 9.5 8. 38.9 and 17.3 kal, respectively

Figure 5-7. Characteristic Distances and Ply Degradation Parameters for

Laminates with Fully-Loaded 5/16 Inch Diameter Holes,
Subjected to Static Tensile and Compressive Loading in
Double Shear,
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listed in Figure 5ý-7. These include the characteristic distances (a 0.10
ons

'inch, a 0.025 inch, and a 0.08 inch), the ply modulus change
,obrg• oso'

corresponding to every' failure mode (k 2 /kI 0.1 for net section, bearing and

shear out), and the ultimate-to-initial ply failure load ratio for each

failure mode (1.02'and-1.50 for net section and bearing, and 1.12 and 1.80

ITfor shear-out under tension and compression, respectively). The P~'
initial"P ratio, corresponding toý the shear-out mode of ply failure, increases

when the applied load is changed. from tension to compression, due to the

larger shear-out (.or shear-in) area under this loading condition. But, for

subsequent. correlation studies, ui i is assumed to be 1.12 for

: the shear-out mode of ply failure, irrespective of the loading mode. This

results in, the use of constant failure parameters when strength predictions

are made for bolted ASI/3501-l6 graphite/epoxy laminates using the SASCJ code.

The SASCJ code and the-above failure parameters (obtained through a

.forced correlation corresponding to a double shear load transfer situation)

were subsequently used to predict the strength of laminates with fully-loaded

holes in a single shear load, transfer configuration. Figures 5-8 and 5-9

present a comparison between 'SASCJl predictions and test results from

Reference 5-1. With the exception of two test cases, an excellent agreement

between SASCJ predictions and test results is noticed. Under tensile loading,

a 17% error between test and analysis is seen for 30/60/10 (percentages of

. . +450 and 90 plies, respectively) laminates in a double shear configura-

tion. Under compressive loading, a 27% difference between the SASCJ pre-

dictI•-n and the test result in Reference 5-1, for 70/20/10 laminates in

single shear, is noticed. Also, a .23% difference between test and analysis

* is seen -for 50/40/10 laminates in a double shear load transfer configuration.

These differences, under compressive loading, will be reduced if PUltimate/
initial

P. for the shear-out ply failure mode is assumed to vary with the shear-

out ýarea (EID).: This will be attemp~ted later when the SASCJ code is used

in the development of a design guide,

5.5 Sample SASCJ Input/0utput

The details of the input data for SASCJ and its prediction of pro-

gressive ply failures are presented by cor.aidering test case 2 in Figure 5-8.
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-. /I- A LtA!

DOUBLE SHEAR SINGLE SHEAR
LAYUP

(% 00. 1460 TEST FAILURE LOAD (KIPS) TEST FAILURE LOAD (KIPS)
CAD EO CASE) E8EX A8

AND 9o
0 PLES) EXPT. ANAL.* ANAL.(

(REF. 6-I) (REF. 4-.) 0.S-t) (RF. L -1)

60140110 i2 4.75 4.67 2 4.91 4.81

70/20110 63 3.98 3.04 21 4.08 4.04

30100110 64 6.97 4.87 22 6. 16 6.0

04M. 4WIP. 6a.6 - 0.10. 0.026. 0.06 fobr all the layvpe

k/I lk a 0.1 for all $allure mode.

P i /pal -* .1.02. 1a0 and 1.11 flo n8e. WO and So. remi0otlwely

/

Figure 5-8. SASCJ Predictions for Sample Laminates vith Fully-Loaded
5/16 Inch Diameter Holes, Subjected to Static Tensile
Loading.
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~L~AL
G RIUPI.AM%#ATI

DOUBLE SHEAR, SINGLE SHEAR
LAYUP

(S 00. 1460 TEST I FAILURE LOAD, (KIPS) TEST FAILURE LOAD (KIPS)
AND *ooPLIES) CASE EXPT. CASE E

E. 11-1) ;(REF. • S-.) ANL. M" 6- I EWIN. S-,, •

60140110 55 -64.49 50 -5.46 -4.67

70/20110 -- -- -4.23 23 -5.55 -4.30

301011 -4.61 24 -5.13 -4.07

* oooe•. • o - e -. i a . -

ain. s~ a" :6O.10'. 0?026. 0 .06 for all laypsin

K 2 /K' . 0.1. 0.1 and 0.1 for n .* **arotlin. beating and sheer-out failure modes.

roopotlivoly. for ell ply typos

P' - It /P 1.02., 1.50 and 1.12 for ns. b6r and so. respectively

"Figure 5-9.. SASCJ Predictions for Sample Laminates with Fully-Loaded
5/16'Inch-Diameter Holes, Subjected to Static Compressive
Loading.
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In this sample situation, a static tensile load is transferred from a laminate

to aluminum in single shear, via a 5/16 inch diameter steel fastener. The

laminate is made up of AS1/3501-6 graphite/epoxy, and has a 50/40/10 layup

defined by [(45/0/-45/0)2 /0/90]S. Its E/D and W/D values are 3 and 6,

respectively. Table 5-2 presents the SASCJ input data for this test case.

The tensile and compressive strengths, and the inplane shear strengths, for

the four ply types (with fiber orientations of 00, 450, -450 and 900) were

obtained using available ASI/3501-6 graphite/epoxy properties and laminate

theory. Referring to Figure 3-8, the bilincar load versus deflection be-

bavlor was defined by assuming k 2 /kI - 0.1 for all the failure modes, and

pultimate/pinitial was assumed to be 1.02, 1.50 and 1.12 for the net section,

bearing and shear-out modes of ply failure, respectively. The rotational

constraints at the fastener head and nut locations were represented by

assuming RI and R2 values to be 1012 (see Equation 3-16).

Table 5-3 presents the results predicted by the SASCJ code for the

problem defined above. Nodes I to 30 are within the aluminum plate, and

nodes 31 to 70 are within the laminate, SASCJ predicts a net section failure

in the 900 plies to be the first failure. This is followed by shear-out

failLres in -45° plies, net section failures in the +45 plies, total failures

of the 900 plies, shear-out failures in the 00 plies, etc. At 4.744 kips,

total failure of the laminate is predicted. The predicced failure load is

within 5% of the average measured value of 4.914 kips in Reference 5-1. Also,

Table 5-3 indicates that laminate failure is predominately precipitated by

shear-out failure in the 00 and -450 plies, and is accompanied by net section

failures in the 900 and +450 plies. The primary mode of failure observed in

Reference 5-1 is the predicted "partial shear-out" of the laminate.

5.6 SASCJ Strength Predictions for Sample Laminates with Partially-

Loaded Holes -- The General Single Fastener Situation

Laminates with partially-loaded holes are analyzed by superimposing

solutions for the corresponding unloaded (open) and fully-loaded hole prob-

lemns (see Section 4.3). Section 5,3 discusses how the various failure para-

meters are obtained. Using these parameters, SASCJ is used to predict the

strength of three laminates subjected to partial fastener loads. Figure 5-10
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TABLE 5-2. INPUT DATA FOR A .50/40/ 10 LAMINATE-TO-ALUMINUM
SINGLE SHEAR TENSILE LOAD TRAN~SFER PROBLU4
(TEST CASE 2 IN REFERENCE 5-1).

DSNAPIE-TF42463.SASCJ.sL.AIJss4I DATA, 4 10..110
INVALID LINIE MmIER.o 00OWUP ASIWIED 4
0.0 4

1 1

ALUNMMJN 3 0:012
c 3 .STEEL
ASI/3S01-6 ((4S/#/-4S/$I2/04)S' 1 30.061 0.3

40 1 0.312S
0.31 a1.0012
0.06 11031

I *.IS62S.O.ISUS24.0 11.8 -4.937S
45.0 13' 1.3 0.337S

-sa3 -1.3 0.9375
90. -1.8 -0.937S

a I 3.S -0.9375
22 3.6 0.937S

I 8 -0.9375 0.9375
I 10.16 -0.3375 -0.937S

3 -60.3 END or "Th
13.5K 1-.906 nEavy

0.560.3

f-3,0.0.7l00
1 IS0.03300.S3*003* 1"0.3

3 40.D3,.96.93356.93.9SD33
3 40.3.S.3.56.93oll3.95032
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TABLE 5-3. SEQUENTIAL FAILURE PREDICTION COJ:ýESPONDING

TO THE DATA IN TABLE 5-2.

FAILURE NODE AI1REUIATIONSI

Pil * NO ADDITIONAL DAMNAE AT CURRENT JOINT LOAD
rL * DELAMINATION
fO * SHEAR-OUT
IR - BEARING
PIS o MET SECTION
SUO* ULTIMATE FAILURE AFTER SO AND DL
SU * ULTIMATE ;AILI)RE IN SO
SU * ULTIMATE FAILURE IN DR
" SU* ULTIMATE FAILURE IN PIS
ULTo ULTIMATE FAILURE

INCREMENT NO JOINT LOAD NODE PLY TYPE NODE

0.3640*04 49 f.00 DECREE PI NS
0.3640?04 ND

30.3670404 60 0.4 DECREE 14S
4 0.2670404 NO0
S 4.3710D04 S1 20.0o DECREE NIS
6 0.3?710.4 ND
7 0.374D#04 S1 60.00 DECREE "s
I $.374D#04 ND
9 O.S370#04 .3 -41S.04 DECREE SO

10 0.387D704 ND
11 0.392D+04 36 -4S.04 DEGREE SO
12 0.392D+84 NO
13 0.4•0D#04 31 45.0#0 KDCREE NS
14 0.420+044 ND
1s 0.422D+04 33 0.0 DECREE SO
16 0.422D*04 ND
17 0.42SD*04 32 45. 600 DCRIE PIS
13 0.425D#04 ND
19 0.427D+04 43 -41S.004 DECREE so
20 0.4270404 14D
2! 0.4210404 34 0.0 DEGREE so
22 0.4230404 ND
23 6.431D#04 44 -4S.O0W KCREE SO
24 0.431D#04 ND
25 6.432D#04 49 ff.0* DECREE NSU
26 0.4320404 No
27 0.4330*04 1O O0. DECGREE NSU
28 0.433D#04 FD
29 0.435*044 St 30.330 DECREE NIU
30 0.4350+04 ND
31 0.4360#04 S 00.0 DECREE NSU
32 0.43GD604 37 0.0 DEGREE so
33 0.4360404 ND
34 0.440D004 38 0.0 DEGREE SO
3S 0.440+404 No
26 0.4s20*04 39 4S.O66 KGREE NIS
37 0.4S20*04 ND
33 0.4S30#04 41 0.0 KIDCRE so
39 0.4S30#04 ND
40 0.4S60*04 40 41.0W DECREE Ns
41 0.4S6D004 NO
48 0.4S6D004 41 0.0 KGREE sO
43 0.4S60#04 ND
44 0.4620404 S? -4S.000 DCREE SO
4S 0.462D#04 No
46 t.464D+04 so -41.0W DEGREE SO
47 0.464D404 ND
41 6.466D+04 45 0.0 DECREE SO
49 0.4660+04 No
so 0.46911#4 48 0.0 DEGREE SO
St 0.4690404 ND
S2 0.4720#04 4? 0.0 DEGREE SO
S3 0.4720404 No
S4 0.4720404 Is -45.00 DEGREE so
SS 0.4720•04 ND
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I ABLE 53. SEQUENTIALý FAILURE PREDICTION CORRESFQNDIN%&
TO THE DATA IN TABLE 5 .2. 'CONCLUDED)

S6 4. 4730*04 66 -4S.400 DECREE so
57 0.4710404

53 .0.4740.44 46 0.0 DECREE SO
S9 .0.474046'4 N
46 0. 4746#04 31: 4S.006 DECREE Hsu
64 0.4740.04 32 45099 DECREE Hsu

61047404 04 S3 0.0 DECRE.E so
63 0.4704004: S4 0.0 DEGREE so

4 ... 0.4740404 SS 0.0 DEGREE so
6S 0.4740404 S& 0.0ý DEGREE so
66 0.47404*4 59 0.0 DECREE so
67 0.4740004 60 0.0 DECREE so
61 0.4740404, 39 4S.600 DEGREE HSU
69. S.4740404 40 4.000 DEGREE Hsu
70 0.47 0#04 . 1 5.0 DECREE "
71 *.4740404 62 AS.00 DEGREE H
71 0.4746404 63, 0.0ý DEGREE so

03S4740064 64ý M. PECREE so
74 0.4740+04 67 0.0 'DEGREE so
75 0.4740404 63' 0.0 DECREE so
76 0.4746404 69 45.000 DEGREE "S
77. 0.474*0.4 3s -40.000 DEGREE sU
701 0.474+404 33 0.0 DECREE Su
79 0.4740404 34 *.* DECREE SU
Is t .4740404 '36 -45.000 DECREE CU

11 .4740404 37 0.SOO DECREE SU
S2 0.4740404 33 . DEGREE SU

830.4740404 41 0.0 DEGREE sU
84 .4740404 42 0.0 DEGREE Su

Is 0.474#,404 43 -4%.000 DEGREE SU
as 0.4740404 .44 ý-45.000 DEGREE CU
87 . 0.4740404 45 00 DEGREE SU
a3 0.474+044 46 0.0 DECREE fu
19 ... 0.474D064 47 00 DEGREE Wv
90 . . 0.4740404 43 . DECREE su
91 , 4*.474D464 53 0.0 DECREE Su
92 :0.4740 404 5 4 0.0, DECREE SU
93" 0.4740#04 SS 0. DECREE CU
94 0.474V064 561 0.0 DECREE SU
95 S044.0 7 -4S. "S DECREE Su
of6 0.4740404 SO6 -40.006 DECREE CU
.97 0.4' 0404 69 0.0 DECREE SU
93go700 60 0.0 DECREE CU
99 0.4740404 $1 45.0W ,DECREE HSU
100oo 0.474*404 62 45.606 DECREE HSU
lea . 0.4740404 63 00 DECREE Su
102 0.4740404 64 0.0 DECREE Su
103 . 0.4740404 6S -45.000 DCREE sU
10404444 66 -46.600 DEGEE Su
305 0.4740404 67 0.0 DEGREE Cu
106 0.4740404: 63 0.0 DEGREE Su
to? 0.47404:04 60 45.009 DECREE mC
M0 0.4740004 70 4S.000 KEGRE ms
log 0. 474#404. 7 45.0W KOME "Su

THE JOSH? FAILED DWINO IN1CREhENT.M MUtR 0

THE FaILURE LOAD s0.47432000404 LIS
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FINAL FAILURE LOAD
BEARING/ (XICpS)

LAVUP TEST CASE TOTAL LOAD

(REF. 6-1 EXPT.
(RIEF. 5-1) ANAL.

50/40110 66 0 12.0 ~ 3.1
67 0.147 10.7 10.0
as 1.285 10.1 6.32
so 0.376 0.44 7.02

2 1.0 4.01 4.74

*For fIte eWN-beariftg and the soen baloCasesg.
a *.a.. .. a**. ...0.....0.0.6o 0.06 . respo oly

u 11 0.1 for me. br@ and so failure modes for all ply #lpess
P ON Initial

P IF a1.02. 1.60 and 1.12 for me. beg; and as. reapeostiely

Ply propoerte larse preseried In F~gure 0-6

I.'

Figure 5-10. Comparison of SASCJ Predictions with Experimental
Measurements for 50/40/ 10 ASI/3501-6 Laminates
with Partially-Loaded 5/16 Inch Diameter Holes,
Under Tensile Loading.
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77

compares SASCJ predictions with experimental measurements (Reference 5-1)

when a tensile loadiis applied on 50/40/10, ASI/3501-6, graphite/epoxy lami-

inates with partially-loaded 5/16 inch diameter holes. SASCJ predictions

agree very well with experimental measurements for the listed fastener

4< bearing-to-total load ratios,.

Similar results for tension-loaded 70/20/10 laminates, with partially-

loaded 5/,16-inch diameter holes, are presented in Figure 5-11. The maximum

difference between SASCJ predictions and test results for this case is seen

to be approximately 30%. A better correlation between test and analysis is

demonstrated by tension-loaded 30/60/10 laminates with partially-loaded holes

(see Figure 5-12).

Figures5-13to 5-15 compare SASCJ predictions with test resultr. from

Reference 5-1, corresponding to a compressive applied load on 50/40/10,

70120/10 and 30/60/10 laminates with partially loaded, 5/16 inch diameter

holes. Again, SASCJ predictions agree very well with test results on

50/40/10 and 30/60/10 laminates, and agree reasonably well with test results

on 70/20/10 laminates, for the listed bearing/total load ratios.

Figures 5-10 to 5-15 demonstrate an acceptable correlation between

analytical predictions and test results for a general single fastener loca-

tion in a bolted laminate. This, in conjunction with the demonstrated

correla~ion in Section 5.4, validates :the use of SASCJ for predicting the

,strength of bolted laminates.

-i ~IL
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71%.

* S...

totdo

FINAL FAILURE LOAD
BEARING/ (KIPS)

LAYUP TEST CASE TOTAL LOAD

(REF. 6-11 EXPT.
(REF. 1-1) ANAL.

70/20/10 00 0 20.8 18.3

01 0.187 15.9 10.6

92* 0.285 12.6 6.37

03* 0.376 11.6 7.7O

21 1.0 4.08 4.04
- - JI,- -

"For the ,uli-bea.,n .and open ho,. oa...a

aone a a.bto * oeo 0.io. o0o.2, 0.06 inch. respeotively

k 1111 a 0.1 for as. bra and so failure modes for all ply typos
Initial%

pun jpintii 1 1.03. 1.60 and 1.12 for no. brg sod so. respeotlvely

Tests were conducted %Ith countersunk steel fasteners (tonslon head.
Ou~ntersunk depth a 0.1 ilac)

Tooels wre Conducted with protruding head. stool fasteners

,* '.*

Figure 5-11. Comparison of SASCJ Predictions with Experimental
Measurements for 70/20/10 ASI/3501-6 Laminates
with Partially-Loaded 5/16 Inch Diameter Holes,

Under Tensile Loading.
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FINAL FAILURE LOAD
LAYP TST ASE BEARING/ (KIPS)LAYUP TESTCASETOTAL LOAD

(REP. 5-1)EXPT I
~pi~s-) IANAL.

30/60/10 04 0 10.3 8.40
06 ~ ~ ~ . I.o .0 5

96 ~0.2859.1 .0
07, 0.375: 8.63 6.60
22 1.a 4.55

Fat me, toaM-_bearhng atdý seen bole @as*e.
a a . . . a a 0.10. 0.0*6. 0 ..06 mob. resec~tivisly

k 1k, . 1 for no. Ore and mo failure, modes for all ply typese

pualt ,1biltlaI 1.0*, 1'.40 and' 1.1t ofo as I. Ore and so., respeollwealy

+Tests were Goadw~otd with seoloreeauah. titsalvom elostomre
(slhear ha.etrukdepth 640.107 lash)

*Tests were senmdtlted with protruaita head. 2t1al tasisear

Figure 5-12. Comparison ,of SASCJ. Predictions with Experimental
Measurements rýfor4 30/60/ 10 ASI/3501-6 Laminates with
Partially-Loaded 5/16 Inch Diameter Holes, Under
Tensile: Loading.
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FINAL FAILURE LOAD
BEARING/ (KIPS)

LAVUP TEST CASE TOTAL LOAD
ANAL.

(REF... -1)

60140110 as6t -13.4 -14.2
go 0.2 -14.1 -11.6

100 0.33 -11.5 -11.0
a 1.0 -5.48 -4.07

for the #:"-bearing oree.
a Oog , a*, * *0IO 0.10. 0.016, 0.02 Isiah. respectively

u2- 0.1. 0.1 and 0.1 for no. brg and so failure modes. respectively.

for all ply types ....

IN it --iIlt 10. .0ad11 for--oo big and so, respectively

.. '

Figure 5-43. Comparison of SASCJ Predictions with Experimental
Mleasurements for 50/40/10 ASI/3501-6 Laminates withL
Partially-Loaded 5/16 Inch Diameter Holes, Under
Com~presuive Loading.



FINAL FAILURE LOAD
BEARING/ (KIPS)LAVYUP TEST CASE TOTAL LOAD

(REF. -I) EXPT. AN

70/20/10 101 0-1. -93
102 0.2, -16.7' -12.2
103 0.33 -- 12.4 -0.69.
23 .0-6.86 -4.80

for thue full-boating ease.
a ow* ses *0 a 0.10. .00 0.0600teh. resesetivoly

kIt 1, a 0.1. 0~.1and 0.1 for,"am.lies and so ignore Modem. respectively.

for all ply types
PuU *pala .1.09. 1.40 and 1.12 fee Me. be@ sod so. mesPe~tivoly

*Teats were coaductod with seumsusoevs & teoteseatmrs (tesonae head.
s*ualo*ow"It dopth * 0.1 Jack)

STests Wreom~eaducted *$to poleeredieg he ad. steel 1aat0eerl

Figure 5-14. Comparison-of SASCJ Predictions with Experimental
Measuxrements for 70/20/10 AS1/3501-.6 Laminates with
Partially-Loaded 5/16, Inh Diameter Holes, Under
Compressive Loading.
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FINAL FAILURE LOAD
BEARING/ (KIPS)

LAYUP TEST CASE TOTAL LOAD

(REF. 6-1) EXPT.
(REP. 6-1) ANAL.

30/00- 0 104 0 -10.5 -8.A8

105+ 0.2 -10.8 -10.3
t00" 0.33 - 8.04 -0.73
24 * 1.0 - 5.13 -4.97

% *h fuN- bearing case.
Sone ,ebro, 4eae 0 0.10. 0.021. 0.00 lach. reospetlvely

h2 11 a 0.1. 0.1 and 0.1 for as, beg and *o failure modea, respoclively.

for all ply typos

P Its 1.03. 1.60 and 1.11 for ms. bee and ao. reapeebeafy

* Toole wore denduuted with aeeltersunk. tlillNM fastleners
(shoer hood. counteorunk depth a 0.0? 160h)

+ Toase were conducted with protruding hood. steat feeteners

Figure 5-.5. Comparison of SASCJ Predictionswith Experimental

Measurements for 30/60/10 AS1/3501-6 Laminates
with Partially-Loaded 5/16 Inch Diameter Holes,
under Compressive Loading.
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SECTION 6

CONCLUSIONS

. A-strength analysis (SASCJ) was developed for laminated and/or metallic

plates bolted together by a single fastener. This analysis includes a two-

dimensional analysis of a finite anisotropic plate with a loaded or unloaded

hole (lIGEOM), a fastener analysis that enables an approximate prediction of

the local three dimensional stress state, accounting for fastener flexibility,

load eccentricity, fastener torque, etc. ODFA), and a progressive failure

procedure based on bilinear ply behavior. FIGEOt and FDFA predictions were

validated using available numErical and analytical solutions. SASCJ strength

predictions were shown to correlate very well with test results from

Reference 5-1.

The major accomplishments of the reported program task are summarized

below:

(1) The developed SASCJ code accounts for finite (actual) planform dimen-

sions of bolted plates. It is,_ therefore, capable of predicting the

effect of small E/D and W/D values (Q 3 and 6, respectively) on the

"strength of bolted laminates.,'-!

(2) The combination of the two-dimensional anisotropic plate analysis

(FIGEOM) and the fastener analysis (FDFA) approximately accounts for

the complex three-dimensional stress/strain state at the fastener loca-

tion. This also enables an analytical assessment of the effect of im-

portant joint parameters that include fastener flexibility, load

eccentricity (single versus double shear load transfer), fastener torque,

laminate stacking sequence, etc.

(3) The progressive failure procedure in the SASCJ code, incorporating a bi-

linear ply behavior into average stress failure criteria, provides sig-

nificant improvements in the strength predictive capability. It eu-

ables the use of unmodified ply properties and invariant failure para-

meters to predict the sequence of ply failures until one of the bolted
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plates suffers total failure (joint failure). It predicts the failure

modes at the ply level, accounting for a realistic combination of many

failure modes in the bolted laminate.

(4) The invariant failure parameters, required as input by the SASCJ code,

are obtainable from a limited number of tests on bolted laminates in a

double shear load transfer configuration. These include the character-

istic distances for the average stress criteria and the k2 /k1 and
ul tima te/ initial2
P P ratios for net section, bearing and shear-out

failure modes. Thir report includes failure parameter values for the

ASI/3501-6 graphite/epoxy material system. For a different material

system, only a few double shear, full-bearing tests have to be con-

ducted to determine the applicable failure parameters.

(5) The SASCJ code can predict the strength of an isolated single faatener

region in a laminate bolted to another plate using many fasteners, pro--

vided the fastener load is known. The SASCJ code can, therefore, be

directly combined with a two-dimensional load distribution analysis

to predict the strength of laminates bolted to other structural elements

using many fasteners. This strength analysis of mnultifastener joints in

composite structures is currently under development in the ongoing

Northrop/AFWAL program.

(6) The SASCJ code is currently being used to develop a design guide for

bolted joints. Expressions are being developed to quantify the effect

of fastener torque on the joint strength. The effects of the geometry

and the properties of the bolted plates and the fastener are being

systematically studied. Obtained results are being analyzed and trans-

lated into applicable design guidelines.

The above accomplishments of the SASCJ code represent a significant

improvement over the currently available strength analysis code (BJSFM).

Nevertheless, SASCJ does contain a restriction and a limitation that should

be addressed in future developmental efforts. The code is currently re-

stricted to a protruding head fastener geometry, and cannot predict the

effect of a flush-head (countersunk) fastener geometry. Also, the fastener -'

bearing load is always assumed to be cosinusoidal in form, and is assumed
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to act over half the hole boundary. This results in a state of stress that
is not very accurate near the hole boundary. The computed ply stresses are,

,therefore, accurate only at planform' locations that are at least a laminate
thickness away from the hole boundary. But, failure predictions are based on
stresses computed over characteristic distances that are smaller or nearly

equal in magnitude compared to the laminate thickness. This leads to an
inaccuracy in the predicted joint strength, and the degree of inaccuracy is
unknown. A modification of the FIGEOM and.FDFA',analyses in tie SASCJ code .
is strongly recommended as a future analytical effort to eliminate the
mentioned restriction and limitation..
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